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Mathematical modeling of electrodynamics near the surface of Earth
and planetary water worlds

Robert H. Tyler

Abstract An interesting feature of planetary bodies with hydrospheres is the presence of an electrically con-

ducting shell near the global surface. This conducting shell may typically lie between relatively insulating rock,

ice, or atmosphere, creating a strong constraint on the flow of large-scale electric currents. All or parts of the

shell may be in fluid motion relative to main components of the rotating planetary magnetic field (as well as the

magnetic fields due to external bodies), creating motionally-induced electric currents that would not otherwise

be present. As such, one may expect distinguishing features in the types of electrodynamic processes that occur,

as well as an opportunity for imposing specialized mathematical methods that efficiently address this class of

application. The purpose of this paper is to present and discuss such specialized methods. Specifically, thin-shell

approximations for both the electrodynamics and fluid dynamics are combined to derive simplified mathematical

formulations describing the behavior of these electric currents as well as their associated electric and magnetic

fields. These simplified formulae allow analytical solutions featuring distinct aspects of the thin-shell electrody-

namics in idealized cases. A highly efficient numerical method is also presented that is useful for calculations

under inhomogeneous parameter distributions. Finally, the advantages as well as limitations in using this math-

ematical approach are evaluated. This evaluation is presented primarily for the generic case of bodies with water

worlds or other thin spherical conducting shells. More specific discussion is given for the case of Earth, but also

Europa and other satellites with suspected oceans.
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1 Introduction

1.1 Scope and goals

This paper treats the mathematical modeling of electrodynamics near the surface of planetary bodies with elec-

trically conducting fluid shells that may be in relative motion. Fundamentally, this involves the calculation of

the behavior of electric charge and electric currents as they interact with material media and momentum. This

interaction is mediated through the electric and magnetic fields and so governing equations often involve these as

variables. Attention is restricted to applications where the traditional approximations in magnetohydrodynamics

apply. This essentially focuses on macro-scale phenomena involving the dynamics of the media where conduction

electric currents dominate over other types of electric current (e.g. displacement, advection). In the application

to Earth, the conduction electric currents involved then reside predominantly in the oceans, secondarily in the

conducting solid Earth, and only negligibly in the relatively insulating lower atmosphere or even the conducting

upper atmosphere where a tensor conductivity implicitly represents electric current types beyond simple conduc-

tion. While the example of Earth is heavily relied upon for the purposes of discussion, this study is aimed at

describing a methodology applicable to a generic class of planetary bodies having a global or large-scale conduct-

ing shell near the surface. Expected extraterrestrial applications primarily comprise water worlds on icy satellites

in the Solar System and conjectured exoplanets with oceans.

While the well-studied equations of magnetohydrodynamics form a complete set of governing equations for

all intended applications, they are more complicated than what is needed here. In these equations, the equa-

tions describing the dynamics of mass and momentum of material media, and the equations describing the

electrodynamics of charge and electric current are coupled. As a result, both sets of equations must be solved

simultaneously. Such is the case in the highly conducting Earth’s core, or in rarified plasmas because in these

cases either the higher prominence of electric currents or the lower prominence of material momentum allow a

near equipartition in the energy densities carried in the electrodynamic and material momentum components.

Such is not the case near the surface of the Earth. The material dynamics (e.g. ocean flow) are controlled pri-

marily by energy inputs not directly related to the internal electrodynamics, and because of the relatively low

electrical conductivity of the media very little of this energy is transferred to the electromagnetic fields. External

energy fluxes into the electrodynamic components are also small compared to the mechanical and thermodynamic

energy fluxes arriving from the atmosphere and gravitational forcing, and so it is the situation that the electro-

dynamic component of the magnetohydrodynamic system near the surface of the Earth has very little energy

and therefore can contribute little to changing the dynamical behavior of the bulk material. One may describe

this then as a restricted magnetohydrodynamic system where the “coupling” is only in one direction—transfer

of kinetic energy can appreciably drive electric currents but the electromagnetic Lorentz forces on the material

flow are insignificant (at least on time scales less than about 1000 years, and with geomagnetic field amplitudes

closely similar to the present (Tyler, 2006)). Similarly, the Ohmic heat generated by electric currents can usually

be considered to be unimportant in the thermodynamic balance. This greatly simplifies calculations because the

equations for the electrodynamics can usually take the mechanical and thermodynamic variables as prescribed

(ocean flow and electrical conductivity, for example, do not then depend on Lorentz forces and Ohmic heat.) The

reduced magnetohydrodynamic system treated in this paper is then akin to the “kinematic dynamo” problem,

although there are additional approximations that can be made because the background main magnetic field is

largely determined by processes other than the ones considered and therefore it can also be prescribed.

The scope in this paper is primarily directed at large and global scale processes. This creates challenges,

as well as opportunities for implementing useful approximations. Challenges include the need to recognize the

spherical geometry (while calculations are typically much easier in a Cartesian domain), and the need to include

within the domain extremely strong contrasts in parameters. The contrast in electrical conductivity between

land and ocean, for example, can lead to instability in some numerical algorithms and can also require high

spatial resolution to preserve important electrical connections through ocean straits. Focus on the larger scales

can simplify calculations by eliminating the need to simultaneously include various small-scale processes, and
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because the expected geometric attenuation of electromagnetic fields away from their sources provides a basis

for aspect-ratio approximations. The simultaneous need for high resolution and large/global domains means that

there is a strong need to seek suitable approximations in the formulations and efficient numerical schemes such

that computations become feasible. The computational efficiency in these methods gains even higher priority

when extending their use to inverse methods in which forward computations may need to be performed many

times to infer physical parameters from observations of the electromagnetic fields.

The primary goal of this paper is then to address formulations and solution methods that are as simplified and

efficient as needed to realistically capture the important physical processes. Even overly simplistic approaches

can be useful if it is clear what component process is missing and/or if the solutions represent an intelligible

end-member or limiting case. A useful alternative goal (not considered here) might be to seek feasible (if not

necessarily fast) general solution approaches where less prerequisite care is required in examining the applicability

of the method and fewer caveats may come in interpreting the solutions. (A general solution method developed

by this author for higher-frequency applications (where the displacment current must be included) in the marine

environment is described in Tyler et al. (2004); a comparison of other modern modeling approaches that include

the realistic global ocean are described in Kelbert et al. (2014).)

The scope of this paper focuses on the mathematical formulations, suitable approximations, and solution

methodologies. Applications enter primarily for illustration and evaluation of the methods. The methods are

directed at cases where the surface shell may have highly inhomogeneous electrical properties, the shell may be a

fluid in motion, and one need not make advance assumptions about the relative importance of induction, motional

induction, and magnetic diffusion. Though not the focus, a variety of simplified formulations and methods where

less generality is required is described in Appendix F. The appendices also include other topics and details that

would be a distraction from the focus in the main text. An outline of the material is provided by the Table of

Contents.

1.2 Background on development of formulations

Simplified forms of the equations governing electrodynamics have been sought in applications involving the near-

surface global Earth. Schuster and Lamb (1889) for example, used a formulation by Lamb (1883) for an assumed

uniformly conducting sphere in his attempt to infer the electrical conductivity of the Earth from analyses of

the variations in the observed geomagnetic field. Modern applications involve a variety of numerical modeling

approaches that may show much less restrictive assumptions in the formulation, but bring new approximations

implicit in the numerical discretization and resolution.

These formulations have typically been based in the Maxwell (or pre-Maxwell) equations together with the

constitutive relationships describing the electrodynamic response of media, despite the history of complaints

appearing in the literature that these equations do not formally apply to the large-scale rotating frame of the

Earth (see review in Tyler and Mysak, 1995a). At issue appears to be the erroneous assumption that the Lorentz

invariance of Maxwell’s equations applies when transferring from an inertial frame to a rotating (accelerating)

frame. The source-free Maxwell’s equations (i.e. the homogeneous Maxwell’s equations involving electromagnetic

fields but no material media) indeed retain this invariance but because of the more trivial lack of any reference to

the location of any material matter or charge in the Universe. In applications of continuous material media, the

Maxwell’s equations are sometimes called the “macroscopic” Maxwell equations as they involve averaging of the

fields over small-scale processes including those fundamentally occurring at molecular and atomic scales within

the material media. In this case, the presence of material media injects a special reference frame (i.e. one where

the material is at rest) and the transformation between coordinate systems requires more consideration. While

Lorentz invariance (from Special Relativity) does not allow transformation from an inertial frame to a rotating

frame, covariance principles (from General Relativity) apply more generally and it has been shown that three of

the four Maxwell’s equations are retained within good approximation in the rotating frame and expected electrical

properties of Earth (Tyler and Mysak, 1995a). Luckily, the so-called “electromagnetic induction equation” used in
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many of the relevant geophysical applications is composed from only these three of the four Maxwell’s equations

and so its use in the rotating frame has remained valid, even if the reason for its validity has been perhaps

misunderstood. (Further details on this topic are included in Appendix A.) In the study described below, it shall

be assumed that the conventional electromagnetic induction equation applies in the rotating frame of the global

Earth and the approximations to be discussed involve considerations beyond those of the transformation of the

coordinate system.

The early work of Schuster and Lamb was followed by further studies that treated the Earth as a uniform con-

ductor and it was quickly appreciated that treating the Earth as a uniform conductor was a poor approximation;

it appeared that the upper mantle was a relative insulator several hundred kilometers thick with electrical conduc-

tivity perhaps three orders of magnitude smaller than that in the surface ocean or in the lower mantle (Chapman,

1919). Once it was appreciated that the upper mantle was resistive and the ocean was the major contributor

to the near-surface conductivity, it must have also then been immediately clear that no spherically-symmetric

conductivity distribution would adequately represent the Earth’s near-surface conductivity.

Price (1949) next provided a thin-sheet induction equation that allowed for non-uniform conductance. Except

in the steady-state or low-frequency limits, this two-dimensional equation should be regarded as a boundary equa-

tion that must be satisfied while solving (other) equations appropriate for the adjacent three-dimensional regions.

While the work by Price (1949) assumed these adjacent domains to be electrically insulating, subsequent work

allowed for inductive (though not galvanic) coupling with a mantle having uniform layers of constant conductivity

(e.g. Hewson-Browne and Kendall, 1978; Beamish and Hewson-Browne, 1980). Solution methods for induction

applications involving radially symmetric conductivity distributions over a sphere have also been described (e.g.

Srivastava (1966)). Later developments exploiting thin-shell approximations have primarily followed an approach

where the electric and magnetic fields are first decomposed into toroidal/poloidal scalar fields and governing

integral equations are solved. A careful review and description of this approach has been provided by Sun and

Egbert (2012). These methods were primarily directed at induction applications excited by time-dependent ex-

ternal magnetic fields. The study here includes as an essential component the possibility that the conducting shell

is in fluid motion, with associated motional induction effects. While the previous approach may include motional

induction sources through simple prescription of an associated imposed current distribution, the approach may

not be optimal for maintaining dynamical consistency with the fluid component. For this purpose, a numerical

approach might ideally attempt to use the same bases or discretization representation in both the electromagnetic

and fluid representations such that conserved properties in both are retained. Additionally, the approach may

gain higher accuracy by following the treatment in calculating integrals of products over the ocean depth as

described by Sanford (1971) and repeated in other global ocean applications (e.g. Stephenson and Bryan, 1992;

Tyler, Sanford, and Oberhuber, 1997). Because the development using toroidal/poloidal bases is well described

by Sun and Egbert (2012), we complete this section by focusing on the past studies using alternate bases aimed

at applications of motional induction in the global ocean.

Tyler et al. (2003) extended the Price equation to allow for relative motion within a spherical conducting

shell. This was needed because in the application of Tyler et al. (2003) it was the relative motion of the ocean fluid

(rather than excitation by external time-dependent magnetic fields) that was driving the electric currents in the

shell. (Stephenson and Bryan (1992) describe a thin-shell formulation that includes essentially a similar motional

modification to the Price formulation but ignores the time dependency such that this approach falls within a larger

class of magnetostatic/electrostatic formulations.) Both of these studies included the conductivity-weighted depth

averaging as described in Sanford (1971). In Tyler et al. (2003), the adjacent domains were taken to be insulators,

while in Sabaka et al. (2015, 2016), the formulation was extended to include either a reflecting lower mantle or

an upper mantle with a spherically symmetric distribution of electrical conductivity. Hence, the Tyler approach

extends the Price formulation to include motional sources and inductive coupling with neighboring (e.g. mantle)

conductors in global, spherical geometry. The approach in Tyler et al. (2003) addressed a previous difficulty in

obtaining general solutions with the Price formulation. While the early Price (1949) and early following studies

had provided iterative approaches that reached convergence in applications involving domains with either no

land or no ocean, the radius of convergence in these methods could not, in general, be maintained below unity.
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Frustratingly, with both land and ocean in the domain, convergent methods were available only in applications

that avoided the near-diurnal frequencies that were precisely of interest in studying the daily variations in the

geomagnetic field. The physical reason behind this convergence problem and the separate behaviors of the equation

below and above the near-diurnal frequency is described in Section 5.

2 Mathematical formulations

2.1 General formulation

2.1.1 Induction equation

The starting point in this analysis is the electromagnetic induction equation

∂tB = ∇× (u×B−K∇×B), (2.1)

where B (T) is the magnetic field vector, u (m/s) is the velocity vector, and K (m2/s) is the magnetic diffusivity

(note K = (µ0σ)−1, where µ0 = 4π × 10−7 V·s/(A·m) is the permeability of free space, and σ (S/m) is the

electrical conductivity of the media.) While u and K are parameters describing the material media and its

relative motion, B is a field quantity and typically extends beyond the domain of the material media which, by

assumption, is a relatively good conductor. Because of this, it should be immediately appreciated that (2.1) may

be incomplete and auxiliary equations may be needed to describe the behavior of B on the material boundaries

or in adjacent subdomains where material media is either absent or the assumption of high conductivity breaks

down. A related issue is to understand any discontinuities in the applicability of (2.1) to domains containing

both good and poor conductors. To understand these additional equations and conditions that must typically be

supplied, it is helpful to review the equations from which the induction equation is derived:

The induction equation is constructed from three of the Maxwell’s equations (2.2–2.4) and the constitutive

Ohm’s Law for a moving conductor (2.5):

∂tB +∇×E = 0 (2.2)

∇×B = µ0J (2.3)

∇ ·B = 0 (2.4)

E + u×B = J/σ (2.5)

where E (V/m) is the electric field and J (A/m2) is the electric current density. Written in this way, the

electromagnetic fields (E, B) and referential velocities (u) are on the left side of the equations while the material

densities J and material properties σ, µ0 are on the right.

The induction equation (2.1) is a vector equation and therefore provides three equations in terms of seven

parameter components of B u, and K. It does not insure, however, that any choice of the three components can

be determined if the other four are known. One can see, for example, that an arbitrary B-parallel component can

be added to u and (2.1) is left unchanged. A solution u obtained from known B and K using (2.1) is evidently

non-unique and other conditions are required to select the physically correct solution. Moreover, the domain over

which solutions must be considered depends on which of the seven components are treated as solution variables

and which are treated as prescribed/observed parameters. An application involving prescribed B may require a

domain comprising only material media, while one where components of B are treated as solution variables may

require a domain extending into regions where no material media is present and the applicability of (2.1) may be

questioned. Let us then discuss the auxiliary conditions and equations that may be added in typical applications:
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2.1.2 Formulation for electrically insulating region

Equations (2.2–2.4) are better referred to as “pre-Maxwell” equations because the displacement current (the key

contribution by Maxwell) is not included. Moreover, other forms of electric current (e.g. advection of spatial

charge density) are also ignored and J is regarded as specifically a conduction current which can take place only

in material media having non-vanishing electrical conductivity σ.

In a region in which J =0, (2.3, 2.4) require that B is both curl-free and divergence-free. From Helmholtz

theorems it can be shown that B can be uniquely obtained from a potential field driven by boundary values.

That is, not only does B obey Laplace’s equation (i.e. ∇2B = 0, which can be obtained from (2.3), with J = 0,

and (2.4) ) but more fundamentally B = ∇B, where B is a potential field satisfying ∇2B = 0.

In the appropriate limit of σ → 0, the induction equation (2.1) reduces to ∇×∇×B→ 0, which together

with (2.4) and vector identities provides ∇2B = 0. Use of (2.1) is then expected to be consistent even when

very small values of σ are prescribed to reflect insulating regions. Care must be taken, however, to insure that

∇×B = 0 and ∇ ·B = 0 are respected. Alternatively, one can apply the governing equation

∇2B = 0 (2.6)

in the insulating regions and the lower order relationships ∇ × B = 0 and ∇ · B = 0 are then automatically

satisfied.

In summary, the induction equation (2.1) can be applied to domains containing both good and poor conductors

but an advance assumption is that the electric currents J are specifically due to the conduction of charge through

a medium that is either stationary, electrically neutral, or moving with low enough relative velocity such that

the products of spatial charge density and velocity do not contribute appreciably as electric current (note that

the assumption of non-relativistic speeds is an additional and independent assumption.) These fundamental

assumptions are required even for the validity of the transformation of the induction equation to the rotating

frame.

2.1.3 Boundary conditions

It is assumed that in all applications to be considered the natural boundary conditions of boundedness and

containment for u and B are obeyed, such that only solutions with finite values in a limited domain of the

Universe are accepted. Because different equations (e.g. 2.1 and 2.6) may be applied in different subdomains, one

must consider matching conditions connecting solutions for B at the interface of these subdomains.

From examination of (2.2–2.4) and assumed boundedness of J, continuity across the interface between media

can be expected for all components of B as well as ∂rBr, where here ”r” can initially be taken to be an axis

normal to the interface.

2.2 Projections of the induction equation onto smooth surfaces

2.2.1 Induction equation on arbitrary smooth surfaces

Toward tractability in finding solutions using the induction equation (2.1), observed or expected symmetries

and/or geometric aspect ratios implicit in some of the parameter fields B, u, and K may be used to uncouple

one or more of the induction equation components. Let us define a vector g = −∇G where G is initially an

arbitrarily chosen scalar field. Taking the dot product of g with (2.1) and using standard vector identities we

write

g · ∂tB = ∇ · ({u×B} × g −K{∇ ×B} × g), (2.7)
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which is an expression describing generation of the magnetic vector component perpendicular to G = constant

surfaces. With further use of algebra and vector identities, (2.7) can be written

g ·∂tB = ∇·([g · u] BH − [g ·B] uH +K∇H [g ·B]−K [g · ∇] BH − (ĝ ·B) ĝ · ∇|g| −K [B · ∇] g) , (2.8)

where ĝ = g/|g|. When we assume g is temporally constant, the term on the left of (2.8) may be written

∂t [g ·B] and (2.8) becomes

∂tBz +∇H · (BzuH)−∇H · (K∇HBz) = ∇H · (uzBH)−∇H · (K [g · ∇] BH)−∇H · (K [B · ∇] g) (2.9)

whereBz = g·B, uz = g·u, and subscriptH refers to the tangential components as above. WhenG is chosen such

that g has unit amplitude, Bz and uz clearly represent the vector components of B and u normal to the constant-

G surface, but other choices for g can be convenient in some applications involving the conservation of magnetic

flux or fluid material quantities. Note that the left side of (2.9) involves only Bz and all spatial differentiation

is tangent to the constant-G surface. The terms on the left side describe a two-dimensional advection-diffusion

process where Bz is advected along the surface by flow uH and diffuses laterally at a rate controlled by the

diffusion coefficient K and the gradients/curvature in the field Bz. The terms on the right side still involve the

other components BH , and the last two terms may involve differentiation ∂z perpendicular to the constant-G

surface. As respective consequences, this scalar equation controlling the behavior of Bz is still coupled to the

other magnetic vector components, and a computational domain consisting of only a two-dimensional surface is

not possible outside of highly idealized cases where much of the behavior of B can be prescribed.

Although the freedom in choosing G is not generally sufficient to isolate an uncoupled, two-dimensional

component of the induction equation, a judicious choice of G may reduce the complexity of coupling between the

induction equations on stacked G surfaces filling a domain. A few examples of such choices are described next.

2.2.2 Induction equation on radially symmetric surfaces

Consider here the case G = r, where r is the radius in a spherical coordinate system. In this case, the constant-G

surfaces are radially symmetric, and g = r̂ is simply the radial unit vector. In spherical coordinates θ, ϕ, r

(colatitude, longitude, radius), we may apply the vector identity

[B · ∇] g =
(
LBgr − r−1 (Bθgθ +Bϕgϕ)

)
r̂ +

(
LBgθ + r−1 (Bθgr −Bϕgϕ cot θ)

)
θ̂

+
(
LBgϕ + r−1 (Bϕgr +Bϕgθ cot θ)

)
ϕ̂, (2.10)

where LB =
[
Br∂r +Bθr

−1∂θ +Bϕ (r sin θ)−1 ∂ϕ
]
, together with standard identities and g = r̂, to find that

in this case [B · ∇] g = BH/r and we write (2.9) as

∂tBr +∇H · (BruH)−∇H · (K∇HBr) = ∇H · (urBH)−∇H · (K∂rBH)−∇H ·
(
Kr−1BH

)
, (2.11)

or, equivalently,

∂tBr +∇H · (BruH)−∇H · (K∇HBr) = ∇H · (urBH)−∇H ·
(
Kr−1∂r (rBH)

)
. (2.12)

2.2.3 Induction equation on geopotential surfaces

Typical large-scale geophysical flows are in hydrostatic balance to first order, meaning the fluid momentum

equations with only the most important terms retained would express simply a balance between pressure gradient

forces and effective gravity. The flow (then a higher-order effect) is predominantly along geopotential surfaces,
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and it becomes interesting to consider the case where G is taken to be the geopotential surface G. In this case, one

may neglect the first term on the right of (2.8). In many applications, assumed slow variation in the geopotential

allows one to also neglect the last term in (2.8).

If δG is the difference in geopotential between two constant-G surfaces separated by a small distance δz, then

we may write g ≈ ẑδG/δz When considering integration or averaging over a layer bound by geopotential surfaces,

δG is uniform and the variations of g are due to variations in the geopotential thickness δz. This representation

is similar to the geopotential “height” used in atmospheric studies and the approach described here can form the

basis for transforming equations to a system with geopotential height as the vertical coordinate.

Note that the hydrostatic assumption is often a reasonable approximation for describing the shape of rotating

bodies composed of “solid” material that is not conventionally regarded as a fluid. The surface of such a body falls,

to a better approximation, on a geopotential surface rather than a spherical surface. This suggests that improved

accuracy may be obtained using an induction equation cast onto these surfaces or with geopotential height as a

coordinate. When there are significant bathymetric variations, one should note that the lowest surface following

this bathymetry does not conform to a geopotential surface except in the large-scale average. Consideration of the

induction equation terms when cast on this surface may at the least provide a description of the errors involved

when assuming simpler projections (e.g. spherical) involving fluids in near hydrostatic balance.

2.2.4 Induction equation on fluid material surfaces

In the last three subsections, the induction equation was projected onto various smooth surfaces in preparation

for simplifications allowing the uncoupling of the vector induction equation components. Here we describe an

approach that, while more abstract, is also more general and immediately includes the previous projections as

special cases. This approach has been described in Tyler and Mysak (1995b). A general derivation is shown using

Lie derivatives along space-time 4-vector trajectories (Palmer, 1988), and Hide (1983) has described a specific

example in magnetohydrodynamics.

When we specify the vector g to be the gradient of an arbitrary scalar field (i.e. g = −∇G ), standard vector

identities allow us to write the induction equation (2.1) as

∂t (g ·B) +∇ · ((g ·B) u) = −B · (−∂tg −∇ (g · u))−∇ · (K{∇ ×B} × g). (2.13)

Let us further assume that the field G is a material property of the fluid medium:

DtG = ∂tG + u · ∇G = ΨG, (2.14)

where the notation Dt = ∂t+ u ·∇ refers to the material derivative and ΨG is the source/sink term for G. Using

(2.14), (2.13) becomes

∂t (g ·B) +∇ · ((g ·B) u) = −B · ∇ΨG −∇ · (K{∇ ×B} × g), (2.15)

or, using ∇ · u = 0,

Dt (g ·B) = −B · ∇ΨG −∇ · (K{∇ ×B} × g), (2.16)

which, with g = −∇G (as well as ∇ ·B = 0, ∇ · u = 0), can be written in the forms

Dt (B · ∇G) = B · ∇ΨG −∇ · (K{∇ ×B} × ∇G), (2.17)

Dt∇ · (GB) = ∇ · (ΨGB)−∇ · (K{∇ ×B} × ∇G), (2.18)

∂t∇ · (GB) +∇ · (∇ · (GB) u) = ∇ · (ΨGB)−∇ · (K{∇ ×B} × ∇G). (2.19)
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The appropriate form of induction equation depends on the application or intuition sought. Generally, the

forms involving the material derivative may help when adopting a Lagragian (i.e. moving with the flow) perspec-

tive, while the forms involving the divergence of terms are easily integrated over volumes to obtain bulk behavior

and conservation principles.

While the previous projections of the last three subsections can be derived from these forms, they do not

demonstrate the power of this formulation because the incorporation of material properties is somewhat trivial-

ized. A very simple example that does use these properties is as follows. Consider G to be the fractional height

in the water column subjected to horizontal laminar flow. One may view this as G = z/h, where z is the depth

below a flat fluid surface and h is the thickness of the fluid layer that we shall assume here also varies spatially.

While the values of z and h vary following a fluid parcel, the ratio (i.e. z/h) should remain the same if the fluid

is conserved (i.e. ΨG = 0). More generally we may have fluid sources and sinks (i.e. ΨG 6= 0). Assuming the

surfaces G vary only on scales much larger than h (the thin-shell assumption), ∇G ≈ 1
h ẑ, where ẑ is a unit

vector normal to the G surface, and (2.17) becomes

Dt
Bz
h

= B · ∇ΨG −∇ · (K{∇ ×B} × ∇G). (2.20)

In the limiting case where the terms on the right side of (2.20) vanish, Dt Bz

h = 0 expressing a conservation of

“potential magnetism” following the flow. This is directly analogous to the concept of “potential vorticity” used in

geophysical fluid dynamics. Here it expresses the effect of contraction and dilation of the fluid column as it flows

over (e.g. topographic) variations in h. The component Bz varies individually because the contraction/dilation

of the water column leads to a similar contraction/dilation of the magnetic field lines. In this case, although Bz
is not conserved following the flow, the ratio Bz

h is.

2.3 Thin-shell induction equation

2.3.1 Formulation

Let us consider the electrodynamics in a thin, spherical shell of electrically conducting fluid material which may

be in fluid motion. The exterior regions immediately adjacent to the shell are assumed to be electrical insulators

such that there is no electric charge transfer between the shell and these regions. While this assumes the thin

shell is galvanically isolated, it is not inductively isolated because electromagnetic fields due to time-dependent

electric currents can pass out of the shell, through the adjacent insulators, and into other conductors where they

may excite electric currents (and associated electromagnetic fields that may return to induce further electric

currents in the shell). Because the adjacent insulating layers may be chosen to be arbitrarily thin, one need not

envision the thin conductive shell as embedded in insulators. In the application below treating a conductive shell

comprising the ocean and sediments at the Earth’s surface, we may include a conductive mantle so long as it is

separated from the shell by an arbitrarily thin insulating upper mantle. In this case, the ocean and mantle are

inductively coupled through the time variable poloidal magnetic field but they are galvanically isolated—meaning

there are no poloidal electric currents connecting the two. The thin shell confines material matter and charge but

not electromagnetic fields. These are multiple ways of describing the same fundamental assumption that makes

the thin-shell approach convenient.

Let us now distinguish a component b driven by electric currents in the shell, and a component F that is due

to electric currents elsewhere. The field F may include prescribed components representing the main geomagnetic

field or fluctuations due to prescribed external sources. It can also include components due to electric currents

(elsewhere than within the conducting thin shell) that are ultimately excited by b. (In which case, the sources

may still be described as “prescribed” but with the understanding that we are focusing consideration on one

component in a coupled system.) The total magnetic field is then B = F + b. Note that because F has no

sources in the thin shell it independently satisfies ∇ × F = 0 and therefore in examining the initial induction
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equation (2.1) it is clear that the magnetic diffusion terms in (2.1) and subsequent forms do not involve F. We

may then write (2.11) as

∂tbr +∇H · (bruH − urbH)−∇H · (K∇Hbr) +∇H ·
(
K∂rbH +Kr−1bH

)
= −∂tFr −∇H · (FruH − urFH) , (2.21)

where we see now prescribed (“forcing”) terms on the right side of the equation. Note that (2.21) is so far just

one component of the induction equation rewritten in a form that anticipates subsequent simplification and

uncoupling of the magnetic vector components.

The distinguishing element of the thin shell which is exploited in simplifying the governing equations is

essentially just the assumption of small aspect ratios describing the flow of mass (i.e. the fluid flow) and the flow

of electrical charge (i. e. the electric current). For the purpose of discussion, let us assume the thin conductive

shell occupies the region a−h0 < r < a. The parameter h0 can be chosen to be uniform and as small as possible

provided the shell of uniform thickness a−h0 is thick enough to include the thickest part of the conducting shell.

The shell is geometrically thin if the aspect ratio h0/Lg << 1, where Lg represents the horizontal geometric

length scales of interest. The shell is electromagnetically thin if h0/Le << 1. Here Le = (2K/ω)1/2 is the

frequency (ω) dependent electromagnetic “skin depth” of the conductive medium of the shell. The skin depth is

simultaneously a measure of the wavelength and attenuation length scales for electromagnetic propagation within

the conducting shell. In the thin-shell approximation, one assumes both of these aspect ratios are vanishingly

small.

The geometric thinness of the shell allows us to immediately approximate (2.21) as

∂tbr +∇H · (bruH − urbH) +∇H · (K∂rbH) = −∂tFr −∇H · (FruH − urFH) . (2.22)

Within the fluid dynamics in the shell, the geometric thinness also gives the expectation |ur| << |uH | and
because |br| ∼ |bH | we may neglect the term in (2.22) involving urbH . Similarly, one may usually neglect the

term involving urFH but because F is prescribed it should be retained in applications (presumably involving

non-global domains) where |Fr| << |FH |.

The electromagnetic thinness of the shell allows us to conveniently replace some of the variables and param-

eters in the thin shell with their depth-averaged values (see Appendix D). When the shell is electromagnetically

thin both br and EH are to a very good approximation uniform with depth in the shell.

The uniformity of br within the thin layer (a − h0 < r < a) together with the required continuity of br at

the interfaces allows us to assume

br(r = a− h0) = br(r = a) = b̄r, (2.23)

where the over bar represents the operation of averaging over the shell depth:

(·) =

∫ a
a−h0

(·)dr∫ a
a−h0

dr
. (2.24)

The uniformity of EH can be exploited to create higher accuracy when depth averaging the terms involving

products (Sanford, 1971). (If one of the factors is known to be uniform with depth, the depth average of the

product of two factors is clearly the product of the depth averaged factors; by contrast, in the general case there

is an additional term that depends on the correlation of the departures of the factors from their means.) When

treating all terms except ∂tbr and ∂tFr, we replace the simple depth average (·) with the conductivity-weighted

depth average (·)∗defined by

(·)∗ =

∫ a
a−h0

(·)σdr∫ a
a−h0

σdr
, (2.25)
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(see the Appendix D).

Using these aspect-ratio approximations and previous definitions, we may write (2.22) as

∂tbr +∇H ·
(
bruH

∗)+∇H ·
(
cd
δbH

2

)
= −∂tFr −∇H · (FruH − urFH)

∗
, (2.26)

where

δbH = bH(r = a)− bH(r = a− h0), (2.27)

cd =
2

µ0Σ
(2.28)

is the lateral magnetic diffusion speed (Tyler, 2005), and

Σ =

∫ a

a−h0

σdr (2.29)

is the layer conductance.

Now let us consider the adjacent coupled domains. Because the regions immediately above and below the thin

shell are assumed to be electrical insulators, the magnetic fields may be written as b = ∇B for the insulating

region above the thin shell and similarly b = ∇B(−) for the insulating region below the thin shell, where B and

B(−) represent the associated magnetic potentials in the insulating upper and lower regions (see Section 2.1.2).

We may write the governing equations explicitly as

∇2B = 0, (2.30)

for region a ≤ r < a2 , and

∇2B(−) = 0, (2.31)

for region a1 < r ≤ a− h0.

We require that b remains continuous across the interfaces of the thin shell and neighboring insulators. This

allows us to write the following conditions:

bH (r = a) = ∇HB|r=a (2.32)

br(r = a) = ∂rB|r=a (2.33)

bH (r = a− h0) = ∇HB(−)|r=a−h0
(2.34)

br(r = a− h0) = ∂rB
(−)|r=a−h0

(2.35)

Using (2.23, 2.32, 2.33, 2.34) to substitute for the components of b, we may write the thin-shell induction

equation as

∂t∂rB|r=a +∇H ·
(
∂rB|r=auH∗)+∇H ·

(
cd∇H

(
B(r = a)−B(−)(r = a− h0)

2

))
= −∂tFr −∇H · (FruH − urFH)

∗
, (2.36)

and by combining (2.23) with (2.33, 2.35) we obtain

∂rB|r=a = ∂rB
(−)|r=a−h0

. (2.37)
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Equations (2.36, 2.37) are boundary equations/conditions that must be solved with (2.30, 2.31) to obtain

solutions for the variablesB andB(−). As (2.30, 2.31) are second-order equations, there are two further conditions

that must be imposed before unique solutions can be obtained. These two missing conditions describe the behavior

of B(−) at r = a1 and B at r = a2. In the approach in this study where B and B(−) are regarded as due solely

to electric currents within the shell considered, we may take for consistency the missing conditions to describe

boundedness at r = a1 = 0 and r = a2 → +∞. If no other conductors other than the thin shell are present, then

the equations above provide a closed set from which general solutions can be obtained. If other conductors are

present (e.g. a conductive lower mantle), then the magnetic fields generated by electric currents in the shell may

induce electric currents in these additional conductors. Associated with this are additional components to the

total magnetic field. We may keep the formulation above as it is by allowing the “forcing” term ∂tFr to include a

component representing the field due to electric currents in the additional conductors. This component of ∂tFr
may, however, depend on the solution rather than being a prescribed parameter. The system is then not closed

until additional equations and conditions are specified. Methods for coupling the thin-shell equations with the

equations describing other conductors are then postponed to Section (2.4).

Returning to the thin-shell formulation above, note that with the conditions for boundedness described in

the last paragraph, the solutions to (2.30, 2.31) that satisfy these conditions are

B =
∑
n,s

B[n,s]S
s
n

( r
a

)−(n+1)
, (2.38)

B(−) =
∑
n,s

B
(−)
[n,s]S

s
n

(
r

a− h0

)n
(2.39)

where
∑
n,s represents an appropriate summation over the complete set of spherical harmonics and B[n,s], B

(−)
[n,s]

represent the associated coefficients of degree n and order s. Taking the radial derivative of (2.38) and (2.39) and

applying (2.37) the following relationship between the coefficients is obtained:

B
(−)
[n,s] = −

(
1 +

1

n

)(
1− h0

a

)
B[n,s] ' −

(
1 +

1

n

)
B[n,s]. (2.40)

For all but the lowest degrees n, (2.40) shows that the coefficients for the potential above and below the shell

are approximately equal in amplitude and opposite in sign (note that because there are no magnetic monopoles,

there are not n = 0 coefficients and therefore 1/n remains bounded in (2.40)).

Further, let us define

M =
B(r = a)−B(−)(r = a− h0)

2
, (2.41)

and letM[n,s] represent a spectral coefficient. We may combine this with (2.40) to obtain the following relationship

between the spectral coefficients

M[n,s] = (1 +
1

2n
)B[n,s]. (2.42)

Using (2.42), we may write (2.36) as

∂tLa [M ] +∇H ·
(
La [M ] uH

∗)+∇H · (cd∇HM) = −∂tFr −∇H · (FruH − urFH)
∗
, (2.43)

where La [·] is an operator that provides

La [M ] = ∂rB|r=a, (2.44)

and is expected to have an inverse. Using (2.38) and (2.42), we may specify

La [M ] =
∑
n,s

(
−n+ 1

a

)(
1 +

1

2n

)−1

M[n,s]S
s
n. (2.45)
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In summary, the three-dimensional coupled domain thin-shell formulation in several variables has been reduced

to a two-dimensional governing equation (2.43) in one variable M and involving summation over the spectral

components. We see by summation of spectral components while using (2.42) that M is approximately equal

to the lower boundary value of the magnetic potential B (i.e. B(r = a)). A small difference due to sphericity

appears only for the lowest degree (n) components. The inverse relationship can be described as

B(a ≤ r) =
∑
n,s

(1 +
1

2n
)−1M[n,s]S

s
n

( r
a

)−(n+1)
. (2.46)

One may then solve (2.43) forM . From the associated coefficients, the magnetic potential B may be obtained

using (2.46). Similarly, using (2.40) and (2.42) in (2.39), B(−) is

B(−)(r ≤ a− h0) =
∑
n,s

−
(

1− h0
a

)(
n+ 1

n+ 1
2

)
M[n,s]S

s
n

(
r

a− h0

)n
. (2.47)

The magnetic fields are obtained as the gradients of these fields. The radial derivative is easily applied to the

spherical-harmonic expansion terms in (2.46, 2.47) to obtain

br(a ≤ r) =
∑
n,s

(
−n+ 1

a

)(
1 +

1

2n

)
−1M[n,s]S

s
n

( r
a

)−(n+2)
, (2.48)

br(r ≤ a− h0) =
∑
n,s

(n
a

)(
− n+ 1

n+ 1
2

)
M[n,s]S

s
n

(
r

a− h0

)n−1

. (2.49)

One may verify using these expressions that indeed br(r = a − h0) = br(r = a), as required by (2.23). The

product of the first two factors in parenthesis in each of (2.48, 2.49) are in fact equivalent. The different forms

here are helpful in showing a separated factor (the first in parenthesis) that is due to the derivative operation.

2.3.2 Non-dimensional form

Non-dimensionalization of the system of governing equations can be useful for several reasons: 1) The number

of parameters in the equations may be consolidated into a smaller number of degenerate combinations; 2) The

relative amplitudes of various terms in the equations may be easier to estimate; 3) The equations may gain greater

stability in the numerical implementation of solutions. An extended goal here is to choose a non-dimensionalization

approach that leaves the equations and notation nearly identical to that in the dimensional form such that

translation between the two forms is simple or trivial. Although in this case the number of parameters is not

formally reduced, one or more of the non-dimensionalized parameters may gain an amplitude of unity.

Let us introduce the following non-dimensional operators, parameters, and variables: ∂̃t = (1/|ωF |)∂t, L̃a =

aLa, ∇̃H = a∇H , h̃0 = h0/a, c̃d = cd/(a|ωF |), B̃ = B/(a|F|/|ωF |), B̃(−) = B(−)/(a|F|/|ωF |), M̃ =

M/(a|F|/|ωF |), F̃ = F/|F|, (where F = −∂tFr − ∇H · (FruH − urFH)
∗
), and ũH = uH/(a|ωF |). The

scaling parameters used here include the arbitrary length scale a (for spherical geometry, we prescribe this to

be the radius of the spherical shell), the radial component of the prescribed part of the magnetic field Fr, and

the characteristic frequency ωF . In frequency-domain applications ωF may typically represent the frequency (a

positive or negative value) of the forcing F . In time-domain applications, ωF may be taken to represent a chosen

inverse time scale.

The thin-shell induction equation (2.43) can then be written as

∂̃tL̃a
[
M̃
]

+ ∇̃H ·
(
L̃a
[
M̃
]
ũH

∗
)

+ ∇̃H ·
(
c̃d∇̃HM̃

)
= F , (2.50)

where

L̃a
[
M̃
]

=
∑
n,s

− (n+ 1)

(
1 +

1

2n

)−1

M̃[n,s]S
s
n (2.51)
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and the solution for the magnetic potential satisfying

∇2B̃ = 0, (2.52)

is related to M̃ by

B̃(a ≤ r) =
∑
n,s

(1 +
1

2n
)−1M̃[n,s]S

s
n

( r
a

)−(n+1)
. (2.53)

2.3.3 Scaling estimates and further approximations

Consider now the relative scaling amplitudes of terms in (2.50). To satisfy (2.52), the spatial scales for the

radial and horizontal variations of B̃ must be similar (a monopole solution is excluded here). Let us write

this symbolically as |∂̃r| ∼ |∇̃H |, where these gradient components inside the modulus bars represents the

appropriate wavenumber or inverse spatial scale components. The largest spatial scales are limited by a and,

to retain consistency with the thin-shell assumption, the smallest scales are limited by h0. Therefore, both

1 . |∇̃H | ≤ 1/h̃0 and 1 . |∂̃r| ≤ 1/h̃0.

The scaling ratio of the second term to the first is |ũH |/(|∂̃t|/|∇̃H |). In applications involving fluid wave

phenomena, the ratio |∂̃t|/|∇̃H | can be associated with the phase propagation which is typically much larger than

the flow speed for large-scale linear wave phenomena. In this case, the second term in (2.50) may be neglected

relative to the first. An additional situation where the second term may be neglected involves the typical case

where it is expected that |br| << |Fr|. If this allows one to assume |∇H · (bruH) | << |∇H · (FruH) |, then
the second term is negligible relative to F̃ . Some care must be taken, however, in validating this assumption as

it should be noted that while Fr is prescribed, LaM = ∂rB|r=a = br is a solution variable.

When the additional approximations described in this subsection are suitable, the thin-shell induction system

gains the simplified form

∂̃tL̃a
[
M̃
]

+ ∇̃H ·
(
c̃d∇̃HM̃

)
= F̃ , (2.54)

The two terms remaining on the left side of (2.54) can, in their order of appearance, be associated with self

induction and magnetic diffusion, respectively. The relative importance of magnetic diffusion to self induction is

then of fundamental importance and is given by the ratio c̃d ˜|∇H | ˜|∇H |/(|∂̃t||∂̃r|) ≈ c̃d/(|∂̃t|/|∇̃H |). Again, for
wave phenomena the ratio |∂̃t|/|∇̃H | may be associated with the non-dimensionalized phase velocity of the wave.

In this case, we see that the importance of magnetic diffusion depends on the ratio of c̃d to this phase speed.

Because the same parameters are used to non-dimensionalize both of these speeds, the significance of this ratio

is the same when dimensional speeds are used.

We may regard cd as the speed of diffusive adjustment of the magnetic field. Recalling the definition c̃d =

cd/(a|ωF |), and noting that 1/a is at the small-end limit of the wavenumber (or inverse spatial scale) that can fit

on the globe, we can interpret the meaning of the non-dimensionalized c̃d. The factor (a|ωF |) is an estimate of the

maximum phase speed expected and so cases where c̃d ? 1 are cases where magnetic diffusion generally dominates

over self induction and quasi-static approximations apply. Conversely, c̃d << 1 does not, however, immediately

imply that self-induction dominates magnetic diffusion. Such a determination is application dependent and can

be determined from the ratio of speeds using the minimum phase speed expected.

2.3.4 Formulations for re-expressing the motional-induction source

On the right side of the thin-shell induction equation (2.43), one may consider the terms −∂tFr − ∇H ·
(FruH − urFH)

∗
as “sources” for electric current in the thin shell. We refer to the first term as an induc-

tion source and the second as a motional-induction source. Here we impose constraints from geophysical fluid

dynamics for the purpose of re-expressing the motional induction term. Re-expressing the motional induction

term can be useful for implicitly including dynamical flow constraints. Of course it is already expected that the
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prescribed flow is indeed dynamically consistent and that appropriate care is taken in any analytical and numeri-

cal approximations to preserve this consistency. But rewriting the term can provide intuition on the relationships

between electromagnetic and fluid variables. Alternate expressions can also be useful in replacing the flow vector

with other variables that are more directly measurable.

The thin-shell approximations expect |ur| << |uH | but this cannot be used to immediately disregard the

term involving ur in the motional-induction source because the relative amplitudes of the radial and horizontal

components of F have not been specified. For global problems, one expects these amplitudes may be comparable

and so one expects that the term involving ur can typically be disregarded. Indeed, outside of flow restricted

to the magnetic equator, it is difficult to imagine cases where this term must be retained. While this term is

included in the formulation for completeness, in this study we shall not consider such cases nor an evaluation of

this term.

The motional-induction term on the right side of the thin-shell induction equation is then just−∇H ·(FruH)
∗
.

We note that a term ∇H · (bruH)
∗
appears on the left side of the thin-shell induction equation (2.25), as br is

a dynamical variable. For the purposes of this section, we can provide a more comprehensive discussion by first

re-combining (using Br = Fr + br) these into the single term −∇H · (BruH)
∗
. In this section we seek to remove

the flow velocity from the induction equation by re-expression in terms of other dynamical variables.

While baroclinic flow can be very efficient at generating toroidal magnetic fields that stay inside of the ocean,

barotropic flow is more efficient at generating the (poloidal) component of the magnetic field reaching outside

of the ocean. The barotropic component of the flow can be understood here to be simply the depth average ū.

Focusing our consideration on barotropic flow and using (2.25), we then expect

ū∗ =
Σoc
Σ

ū. (2.55)

Where most of the shell conductance is due to the ocean layer (Σ ≈ Σoc), we see that ū∗ reduces to the

simple depth-averaged velocity ū. We may also expect that Br = Fr + br is approximately uniform with depth.

The uniformity of br with depth is required to meet the assumption made in the formulation that the shell is

electrically thin. The uniformity of Fr with depth in the shell is not required in the formulation but it is expected

to be typically valid due to the assumption that the shell is geometrically thin. We have then for barotropic flow

(BruH)
∗ ≈ BruH∗ = Br

Σoc
Σ

ūH . (2.56)

Now let us consider constraints derived from the dynamical equations for the barotropic fluid dynamics. The

two governing equations are derived from the principles of conservation of mass and momentum but the forms

typically expressed incorporate varying approximations. Mass conservation is usually expressed as the continuity

equation

∂tη +∇ · (hūH) = 0, (2.57)

where η represents the surface displacement of the ocean. Momentum conservation can be represented by the

linearized momentum equation

[∂t + α+ f r̂×] ūH = −g∇H (η − ηF ) +
τ

ρ̄h
, (2.58)

where the acceleration terms on the left include the Coriolis parameter f = 2Ω cos θ (Ω is the rotation rate and

θ is colatitude) and α represents either a Rayleigh drag coefficient or, more generally, an operator describing

dissipation/drag. On the right, g is the surface gravity acceleration and ρ̄ is the depth-averaged fluid density. The

term −g∇ (η − ηF ) represents pressure-gradient forces due to the instantaneous departure of the surface η from

the equilibrium surface ηF . If the equilibrium surface is steady, then one usually defines η such that ηF = 0. The

equilibrium surface corresponds with a surface of constant gravitational potential which, however, varies in time

when tidal forces are considered. In the latter case, ηF is the equilibrium tidal displacement, corresponding to
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the surface the ocean would adopt if the ocean could instantaneously dynamically adjust to the changing tidal

force. The vector τ is a force vector due to prescribed sources. We regard the dynamical variables in (2.58) as

uH , η, while other parameters are considered to be prescribed.

We will give two re-expressions for the motional-induction source term—the first incorporating conservation

of mass, and the second incorporating conservation of momentum. Using (2.56) and (2.57), we may write

−∇H · (BruH)
∗

=
Br
h

Σoc
Σ

∂tη − hūH · ∇H
(
Br
h

Σoc
Σ

)
. (2.59)

We see that this expression involves both the surface displacement η and the flow velocity ūH . In applications

where the gradients of Br

h
Σoc

Σ can be ignored, the term involving ūH vanishes. Even where both terms remain, this

re-expression can be useful because ūH no longer appears in the divergence operation and the motional-induction

source may then be less susceptible to interpolation errors.

In the second example we incorporate (2.58). We expect that for a wide range of applications and assumptions,

the operator

Lu = ∂t + α+ f r̂× (2.60)

can be inverted such that one can solve (2.58) for uH to obtain

ūH = L−1
u

[
−g∇H (η − ηF ) +

τ

ρh

]
. (2.61)

In such cases, we can then combine (2.56, 2.61) to write

−∇H · (BruH)
∗

= −∇H ·
(
Br

Σoc
Σ
L−1
u

[
−g∇H (η − ηF ) +

τ

ρh

])
(2.62)

An important specific example where Lu can be easily inverted is where the time dependence is repre sented

parametrically such that the operator ∂t can be regarded simply as a symbol representing a coefficient, and α

is independent of time. In this case, we can discover L−1
u by performing the operation [∂t + α− f r̂×] on (2.58)

and rearranging to obtain

L−1
u = γ

(
∂t + α

2Ω
− f

2Ω
r̂×
)
, (2.63)

where

γ =
2Ω

(∂t + α)2 + f2
. (2.64)

The operator Lu may also be easily inverted in applications where the frequencies (or inverse time scales)

considered are much smaller in amplitude than f . In global applications, |f/(2Ω)| ≤ 1 and we may write this

criterion as |∂t/(2Ω)| << 1. In this case, Lu ≈ α + f r̂× is easily inverted to obtain L−1
u = γ

(
α
2Ω −

f
2Ω r̂×

)
.

An alternative argument leading to the same approximations is the assumption |∂t| << |α|. Note that when this

condition applies, and additionally α = 0, the flow is geostrophic (see Section 2.3.5).

In this subsection, we have shown that the motional-induction source term, usually involving the flow velocity

vector uH , can be re-expressed in terms of the surface displacement η and forces on the ocean. The surface

displacement is a scalar rather than a vector, and it may also be measured remotely. The forces on the ocean may

include wind stress and atmospheric pressure that are also measured. By contrast, the barotropic flow velocity is

less observable directly and so this replacement with observables can provide benefit.

2.3.5 Geostrophic flow in dipole magnetic field

On time scales much larger than the rotation period, geophysical flows are often geostrophically balanced, at

least to the first order of approximation. In the case of the flow described in the last section, L−1
u (from (2.63)

is then L−1
u ≈ − 1

f r̂× and
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ūH = − g
f
∇Hη × r̂, (2.65)

while in the more general case of geostrophic flow in response to an arbitrary pressure field P ,

ūH = − 1

ρf
∇HP × r̂, (2.66)

where ρ is the fluid density.

An interesting feature of geostrophic flow is that the motional induction source term is then

−∇H · (BruH)
∗

= ∇H ·
(
Br

Σoc
Σ

1

ρf
∇HP × r̂

)
= ∇H

(
Σoc
Σ

Br
ρf

)
· (∇HP × r̂) . (2.67)

Where, as a first approximation, Σoc/(Σρ) may be treated as uniform, we see that magnetic field generation

requires then that Br/f be non uniform; magnetic fields are motional induced by flow across the contours of

Br/f . Note, however, that when Br is an axis aligned dipole, this ratio is uniform over the globe. Geostrophic

flow does not interact with the axis dipole component of the main magnetic field to generate electric currents

and associated magnetic fields. This provides an important example where the first-order source term to the

induction equation cancels by symmetry. One must then take precautions with interpolating parameters so that

interpolation errors do not corrupt the second-order source term remaining.

2.4 Coupling thin shell with exterior conducting regions (e.g. mantle)

If conducting regions other than the thin shell are included, an appropriate induction equation for these regions

(or prescribed values on the boundaries) is required. Electric currents in these conductors may be excited by

their own motional-induction sources or they may be excited by induction sources external to the conductor. Of

special interest is the case where the induction source is due to electric currents in the thin shell considered and

is therefore a solution variable rather than prescribed parameter. Let us explicitly write ∂tFr = ∂tF
(p)
r +∂tF

(d)
r

to distinguish these prescribed (’p’) and solution-dependent dynamic (’d’) components.

2.4.1 Concentric conducting shells

An example that is immediate, because the governing equations and boundary conditions are similar to those

already described, is the inclusion of another thin conducting layer that is concentric with the first (i.e. both

shells have uniform radii within the same coordinate system). For that matter, one may consider any number

N of additional shells. The equation for each of the thin shells gains contributions to ∂tFr describing the radial

derivative of all the other magnetic potentials generated by the other layers. We may write this as follows. In

order of increasing radius, let layer i, be located between shells 1...i − 1 and i + 1...N . The thin shell equation

for layer i then gains the coupling term

∂tF
(d)
r,(i) =

i−1∑
1

∂t∂rB(i) +

N∑
i+1

∂t∂rB
(−)
(i) . (2.68)

The total magnetic field (or magnetic potential) at any point is of course due to the sum over the N compo-

nents.

2.4.2 Perfectly conducting layer

A second simple example is the assumption of a perfectly conducting layer at uniform radius. In this case one may

assume that the radial component of the total magnetic field vanishes at the interface with the perfect conductor.

Consider the case where the highly conducting lower mantle is represented as a perfect conductor. The top

surface of the perfect conductor is located at radius rm concentrically below the thin shell. The condition at the
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interface requires that we find F (d)
r such that F (d)

r (r = rm) = −br(r = rm) , where br(r < a− h0) is given by

(2.49). The solution is

F (d)
r (rm ≤ r) =

∑
n,s

{
n

a

(
n+ 1

n+ 1
2

)
M[n,s]S

s
n

(
rm

a− h0

)n−1
}(rm

r

)n+2
, (2.69)

where the term in curly brackets represents the coefficients for -br(r = rm) and the factor
(
rm
r

)n+2 gives the

geometric attenuation with radius away from the internal source. Depth-averaging (2.52) over the shell thickness

h0 and noting br(r = a− h0) = br(r = a) we have

F
(d)
r =

∑
n,s

{
n

a

(
n+ 1

n+ 1
2

)
M[n,s]S

s
n

}(rm
a

)2n+1
{(

1− h0
a

)−(n−1)
((

1− h0
a

)−(n−1)

− 1

)}
, (2.70)

which, within the thin shell assumption a/n >> h0, can be written as

F
(d)
r = Lpcl [M ] =

∑
n,s

{(
n+ 1

a

)
(1 +

1

2n
)−1M[n,s]S

s
n

}(rm
a

)2n+1
, (2.71)

where the term in curly brackets is, by (2.48), equal to −br(r = a) and we have defined the operator Lpcl for
the perfectly conducting lower (’pcl’) layer.

Similarly, an operator describing the field F (d)
r reflected off a perfectly conducting upper (’pcu’) layer located

at r = re is

F
(d)
r = Lpcu [M ] =

∑
n,s

{(
n+ 1

a

)
(1 +

1

2n
)−1M[n,s]S

s
n

}(re
a

)2n+1
. (2.72)

2.4.3 Radially symmetric conductor

More generally, one expects that an appropriate induction equation is required to represent the additional con-

ducting region. The most versatile form is (2.1) but this retains the complication of the coupled vector form that

the thin-shell formulation is designed to simplify. As described in earlier sections, simplification of the induc-

tion equation requires a symmetry in the spatial distribution of the electrical parameters and/or the expected

electromagnetic fields. A useful simplification for representing the conductivity of the mantle, for example, is to

assume that it varies only radially. (In some models, the largely radial dependence of pressure may also justify an

expected radial dependence for conductivity.) In this case, the induction equation (2.1) simplifies to the following:

∂tB−K∇2B + ∂rKr̂×∇×B = ∇× (u×B) (2.73)

Applied to the presumed-stationary mantle (u = 0), and observing (2.4) with vector identities one can extract

an equation for the uncoupled radial component

∂tBr −K∇2Br = 0. (2.74)

To provide more generality with little more computational burden, we may assume instead

∂tBr −K∇2Br = G, (2.75)

where G = r̂ · ∇ × (u× F) represents a prescribed component. Note that even in the typical case where

G = 0, (2.75) may be set up as either a homogenous equation driven by inhomogeneous boundary conditions

or an inhomogeneous equation with homogenous boundary conditions. The latter arrives if one breaks Br into

components (Br = F
(p)
r + F

(d)
r + br) and observes that F (p)

r and br independently satisfy Laplace’s equation

within this domain because their source electric currents are, by definition, elsewhere than in the shell. In this

case, one has as an alternative to solve the inhomogeneous equation
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∂tF
(d)
r −K∇2F (d)

r = −∂tbr (2.76)

with simpler boundary conditions.

Because the insulating layer between the thin shell and the conducting region considered here (e.g. a conduct-

ing mantle below the thin shell) can be taken to be arbitrarily small, we may assume it vanishes and apply the

continuity conditions for the radial magnetic field directly between the conducting mantle and the thin shell. Al-

though the insulating region is then absent, the assumption that the thin shell is galvanically isolated is, however,

retained. Note that this formulation permits the conductivity to approach zero and so there are no restrictions

imposed on the extent of insulating regions. Indeed, this formulation is more general than the approaches in

Section 2.4.2 that assume insulators with perfectly conducting boundaries.

One has then to solve (2.75) assuming K = K(r) = (µ0σ(r))−1. At the interfaces of this conductor with

other regions, continuity of Br is required. Continuity of BH together with (2.44) require also that ∂rBr is

continuous across the interface. We have further the requirement of bounded solutions.

Applying a separation of variables and spherical-harmonic expansion,

G =
∑
n,s

Q[n](r)G[n,s](t)Ssn, (2.77)

Br =
∑
n,s

R[n](r)B[n,s](t)S
s
n (2.78)

and using these in (2.75) we find that for each degree n the following equation must be satisfied

R[n]∂tB[n,s] −K
1

r2
∂r
(
r2∂rR[n]

)
B[n,s] +K

n(n+ 1)

a2
R[n]B[n,s] = Q[n]G[n,s]. (2.79)

Finally, let us describe more specifically the boundary conditions as they could be applied in the example

of the underlying conductive mantle (with vanishing insulator between the two) where G = 0 and all electric

currents in the mantle are ultimately induced by the fields from the electric currents in the overlying thin shell.

In this case, within the mantle Br = F
(d)
r +br (where br = ∂rB

(−)). Because F (d)
r and br are respectively due to

sources below and above the interface r = a− h0, we may write the following expansions for bounded solutions

F (d)
r (a− h0 ≤ r) =

∑
n,s

F[n,s](t)

(
r

a− h0

)−(n+1)

Ssn, (2.80)

br(r ≤ a− h0) =
∑
n,s

b[n,s](t)

(
r

a− h0

)n
Ssn. (2.81)

Equating terms of each harmonic in Br = F
(d)
r + br, we may write

R(r = a− h0)B[n,s] = F[n,s] + b[n,s]. (2.82)

Continuity of ∂rBr at r = a− h0 requires

∂rBr|r=a−h0
= ∂rF

(d)
r |r=a−h0

+ ∂rbr|r=a−h0
. (2.83)

Taking the radial derivatives in (2.80, 2.81) and combining with (2.82), we have the following boundary condition

(
∂rR[n]|r=a−h0

+
(n+ 1)

a− h0
R[n](r = a− h0)

)
B[n,s] =

2n+ 1

a− h0
b[n,s] (2.84)

which must be solved together with (2.79) and a second condition (e.g. boundedness or vanishing values on the

low-r end of the domain).
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The solution in (2.78) involves only the product of B[n,s] and R[n]and so one must specify an additional

condition if these are to be described uniquely. In some applications (e.g. cases where the temporal dependence is

represented parametrically), one may interpret the solution variable as this product and a unique description of

B[n,s] and R[n] is not needed. In more general applications (e.g. one with explicit time dependence), a convenient

condition to specify is

R[n](r = a− h0) = 1 (2.85)

as one can see by (2.82) that B[n,s] is then the value of Br at r = a− h0.

2.5 Summary of the coupled thin-shell formulation

As described above, the thin-shell induction equation is a boundary equation in two dimensions that must

generally be solved simultaneously with appropriate equations in three dimensions for the behavior of fields and

currents in the adjacent insulators and conductors. In the special case where these three-dimensional regions are

either insulators or the conductivity is a function only of spherical radius, a spherical-harmonic expansion provides

analytical solutions in the three-dimensional regions and the system in three dimensions reduces to solving a two-

dimensional thin-shell induction equation with terms involving spherical-harmonic transformations.

Replacing a multivariate system in three dimensions by this reduced-dimension system involving one variable

should show strong computational advantages. But note that in the derivations above the system of the thin-shell

coupled with external conductors reduced to a closed two-dimensional equation only in the examples where F (d)
r

could be related to M . At the risk of repetition, we shall attempt here to consolidate and summarize these

formulations.

The thin-shell induction equation is

∂tLa [M ] +∇H ·
(
La [M ] uH

∗)+∇H · (cd∇HM) = −∂tFr −∇H · (FruH − urFH)
∗
, (2.86)

where the operator La is defined by (2.44). This equation involves the variable M (the difference in magnetic

potential between the upper and lower surfaces (2.41)), the horizontal and radial components of the flow velocity u

and associated averaging operators described by the overbar and star operations (2.24, 2.25), the lateral magnetic

diffusion speed cd (2.28), and a magnetic field component F due to electric currents elsewhere than within the

thin shell. Because Fr may include dynamical components F (d)
r that ultimately depend on M , (2.86) must, in

general, be solved together with the equations governing F (d)
r . Solving these equations “together” means that

they are solved either simultaneously or, alternatively, that they are solved sequentially in a convergent iterative

approach. In the latter, a component F (d)
r contributing to Fr may be treated as a correction term that can be

regarded as a prescribed term during an iteration in which (2.86) is solved.

The simultaneous solution approach includes numerical methods in which coefficient matrices for the coupled

systems are inverted simultaneously. It also includes examples we have shown of analytical combination where the

base solutions for F (d)
r are incorporated into the thin-shell equation which then becomes closed (i.e. uncoupled

from other equations). These examples of analytical combination were possible in the case where F (d)
r is the

magnetic field associated with response electric currents in external conductors, and assuming these external

conductors have radial symmetry. These cases can here be summarized as being governed by the thin-shell

equation

∂tL [M ] +∇H ·
(
L [M ] uH

∗)+∇H · (cd∇HM) = −∂tF (p)
r −∇H ·

(
F

(p)
r uH − urFH

)∗
, (2.87)

where L = La + Ld, the operator Ld provides

Ld [M ] = F
(d)
r , (2.88)



22 Robert H. Tyler

and Fr on the right side has been replaced with F (p)
r to emphasize that it now strictly includes only a prescribed

component that is independent of M . In the case of a perfectly conducting external layer (Section 2.4.2), Ld
represents either Lpcl (as defined in (2.71)) or Lpcu (as defined in (2.72)). In the case of a conducting mantle

with radial symmetry, see (2.4.3).

In nearly every application one would consider, it is consistent with the thin-shell assumptions to ignore the

component involving ur on the right of (2.87). It is retained to allow the somewhat contrived application where

the only sources are flow, and the only flow is at the magnetic equator. Outside of that isolated application, the

component involving ur is ignored and we see the right side of (2.87) includes only prescribed terms. In typical

cases for Earth where the magnetic field associated with electric currents in the shell is much weaker than the

background (main) magnetic field (i.e. |b| << |F(p)|), we may also ignore the second term on the left of (2.87). As

will be seen below, the latter approximation can be useful in seeking analytical solutions, or numerical solutions

following the fixed-point iterative method, but this approximation is not needed (nor necessarily helpful) in the

primary solution method proposed below in which Krylov sub-space methods are used (the Krylov methods used

to solve linear systems require only a procedure for calculating the matrix-vector product, and so simplifications

that help construct the explicit coefficient matrix can lose relevance).

The remaining terms on the right of (2.87) include the induction source −∂tF (p)
r . Important examples include

the fluctuating magnetic field due to external electric currents in the ionosphere and magnetosphere, or fluctuating

magnetic fields due the magnetic field of a neighboring planetary body under rotation (e.g. the case of Jupiter’s

field projected onto the Galilean satellites.) In the approximations above, it is important to note that while

|br| << |F (p)
r |, it is not assumed that |∂tbr| << |∂tF (p)

r |. In the case of Earth, F (p)
r primarily represents the

quasi-steady main field with source currents in the core, while ∂tF
(p)
r may be dominated by fluctuating sources

in the ionosphere and magnetosphere.

Also included on the right of (2.87) is the motional induction source −∇H ·
(
F

(p)
r uH

)∗
which is due to

the interaction of the flow with the background main magnetic field F
(p)
r . As described in Section 2.3.4, the

equations for the fluid dynamics can be used to remove the flow velocity from this term and re-express it in

terms of the dynamical surface displacement of the fluid and/or the external forces on the flow such as the tidal

potential, wind stress, and atmospheric surface pressure. These re-expressions can be useful for imposing implicit

fluid-dynamical constraints, and for expressing the source in terms of other remotely observable quantities such

as the surface displacement.

3 Analytical solutions

Here we describe fundamental analytical solutions of the thin-shell induction formulation under idealized condi-

tions.

3.1 Eigenfunction analyses of thin-shell formulation (free-decay time scales)

Here we consider the homogeneous version of (2.87) with coupling representing a perfectly conducting layer at

radius rm below the thin shell. (This includes the case without the conducting layer as a limiting case.) Assuming

|Fr| >> |br|, we also ignore the self-advection term (second term on left). In this case L = La + Lpcl (with La
defined by (2.44) and Lpcl defined in (2.71)) and (2.87) becomes

∂t {La + Lpcl} [M ] +∇H · (cd∇HM) = 0. (3.1)

When, additionally, we assume that cd is uniform, the eigenfunctions of (3.1) are simply the spherical-harmonic

functions and we may investigate the nature of the associated eigenvalues. Associated with each spherical-

harmonic degree n, we treat here the symbol ∂t,[n] as describing a real, negative valued inverse time scale
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describing the exponential free decay of the electric currents in the shell and their associated electric and mag-

netic fields. Performing a spherical-harmonic expansion of (3.1), the algebraic equations for the eigenvalues are

solved to give

∂t,[n] = −

(
1 + 1

2n

1−
(
rm
a

)2n+1

)
ncd
a
. (3.2)

The case of an isolated thin shell is obtained by letting rm → 0, in which case the inverse decay time scale is

∂t,[n] = −(1 + 1
2n )ncda . For all but the very lowest degrees, ∂t,[n] ≈ −ncda , which can be interpreted as follows.

The length-scale/inverse wavenumber is given by a/n and so the decay time scale is simply set by the amount of

time it takes for the lateral diffusive adjustment speed cd to span this length scale. The parameter cd, introduced

in Cartesian-coordinate studies (Tyler, 2005) is then seen to extend to the spherical geometry with the same

physical interpretation. The additional factor (1 + 1
2n ) is a small adjustment due to sphericity.

We see in the denominator of the term in parenthesis in (3.2) that the effect of a perfectly conducting layer

below the shell is to increase the amplitude of the inverse decay time scale (i.e. the amplitude of the decay time

scale increases.) In the limiting case of a perfectly conducting layer immediately below the thin shell (rm ≈ a),

∂t,[n] → −∞ and the decay time scale vanishes. In this limiting case, br generated by electric currents in the shell

is immediately cancelled by F (d)
r due to electric currents in the perfectly conducting layer immediately below.

3.2 Response function analyses of thin-shell formulation

Consider now the inhomogeneous version of (2.87), again with the self advection term ignored and again assuming

a lower perfectly conducting layer. We have

∂t {La + Lpcl} [M ] +∇H · (cd∇HM) = F , (3.3)

where F represents here an arbitrary prescribed source with associated spherical-harmonic coefficients F[n,s].

With a prescription of the temporal dependence of F one may perform a spherical-harmonic expansion and

temporally integrate (3.3) to obtain the solution for each M[n,s]. Here we shall assume that ∂t is a symbol

representing the parametric temporal dependence. In this case, an algebraic (rather than differential) equation

is presented for each degree n and one may immediately solve for M[n,s]. We further apply (2.48) to present the

solution in terms of br,[n,s]:

br,[n,s](r = a) =

( (
a
n∂t

)(
a
n∂t

)
+ (1 + 1

2n )cd

) (
a
n∂t

)
+ (1 + 1

2n )cd(
1−

(
rm
a

)2n+1
) (

a
n∂t

)
+ (1 + 1

2n )cd

(F[n,s]

∂t

)
. (3.4)

The second factor in parenthesis on the right of (3.4) describes a factor due to the perflectly conducting layer.

One sees that as the layer vanishes ( rma → 0), this factor becomes unity. The first factor in parenthesis describes

the response function in the absence of the perflectly conducting layer.

When taking the periodic dependence to be specifically sinusoidal (e.g. ∂t → −iω, where ω is the frequency

and the real part of complex solution variables correspond to physical variables), we may write (3.4) as

br,[n,s](r = a) =

(
cp
cs

)(
1

1−
(
rm
a

)2n+1 cp
cs

)(F[n,s]

∂t,[n]

)
(3.5)

where cp = i an∂t may be associated with a phase speed and cs = cp + (1 + 1
2n )icd is a complex scaling speed

(identical to that defined in (Tyler, 2005) with the exception of the factor (1 + 1
2n ) due to sphericity). Similarly,

the first factor in parenthesis on the right of (3.4) is the response function identical to that in (Tyler, 2005).

The second factor in parenthesis on the right side of (3.5) is due to the reflecting layer. We see that this

factor is generally a complex number with amplitude less than or equal to one. Hence, in periodic applications,
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the reflecting layer decreases the amplitude of br and may also change the phase. In the absence of the reflecting

layer (i.e. rm → 0), this term is unity and (3.5) shows that the response depends simply on the ratio cp/cs.

The term “response function” used above becomes most clear for the case of induction. When F = −∂tF (p)
r ,

representing an inductive external field, (3.5) becomes

br,[n,s](r = a)

F
(p)
r,[n,s]

= −
(
cp
cs

)(
1

1−
(
rm
a

)2n+1 cp
cs

)
, (3.6)

which shows that the fractional amplitude of the magnetic field associated with electric currents induced in the

thin shell is fully described by the response factors on the right side of the equation. The total observed response

will be the combination br + F
(d)
r . Using (2.71) with (3.6) we may write

br,[n,s](r = a) + F
(d)
r,[n,s](r = a)

F
(p)
r,[n,s]

= −
(
cp
cs

)(
1−

(
rm
a

)2n+1

1−
(
rm
a

)2n+1 cp
cs

)
, (3.7)

from which we see that when magnetic diffusion is relatively weak (cd << cp), and the reflecting layer is not

present (rm → 0, and F (d)
r = 0), br(r=a)

F
(p)
r

≈ −1. In this case, the thin shell acts like a perfectly conducting layer.

When magnetic diffusion dominates (cd >> cp) and the reflecting layer is not present, br(r=a)
F

(p)
r

is imaginary

(therefore br is 90 degrees out of phase with F (p)
r ) and the amplitude is less than one.

When the reflecting layer is included, we must consider the second factor in parenthesis on the right in (3.7)

as it is no longer necessarily unity as in the case where the layer vanishes (rm → 0). First note that because(
rm
a

)2n+1 ≤ 1, and because cp
cs

has a positive real comonent and amplitude | cpcs | ≤ 1, the second factor in

parenthesis in (3.7) has an amplitude less than or equal to unity. In the limit of the layer being raised to the

shell radius (rm → a), the right side of (3.7) vanishes and br = −F (d)
r . This is true so long as cs retains an

imaginary component (i.e. a non-vanishing cd). When cd << cp,
br(r=a)+F

(d)
r (r=a)

F
(p)
r

≈ −1, indicating that some

combination of br and F (d)
r together cancel F (p)

r .

When considering motional-induction sources, we may replace (3.6) with

∂tbr,[n,s](r = a)

−∇H ·
(
F

(p)
r uH − urFH

)∗ =

(
cp
cs

)(
1

1−
(
rm
a

)2n+1 cp
cs

)
, (3.8)

and (3.7) with

∂tbr,[n,s](r = a) + ∂tF
(d)
r,[n,s](r = a)

−∇H ·
(
F

(p)
r uH − urFH

)∗ =

(
cp
cs

)(
1−

(
rm
a

)2n+1

1−
(
rm
a

)2n+1 cp
cs

)
. (3.9)

In this case, the response functions on the right side of the equations may be more appropriately understood as

functions describing the efficiency at which the background field F (p)
r is advected by the flow and/or strengthened

through bundling of field lines by flow convergence (or weakened by flow divergence).

3.3 Using dispersion relationships from fluid dynamics as constraints

In the last sections, a parameter cp was introduced and termed a “phase speed” though it is initially just a

combination of parameters having units of speed. This terminology follows (Tyler, 2005) and anticipates situations

where the length and time scales of the flow phenomenon considered are not independently prescribed but rather

are related through the dynamics. For various wave phenomena in geophysical fluid dynamics, there is a dispersion

relationship, often described as ω = ω(κ), where ω is the frequency and κ is the wavenumber. One may similarly

write the phase speed cp = ω/κ as cp = cp(κ). When the space and time scales are those associated with a

dynamical fluid process, the form (3.5) can be useful because constraints may be more easily applied to cp than

to the space and time scale parameters taken individually.
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Interestingly, there are important examples where the wave propagation is not dispersive (i.e. cp does not

depend on κ) and the dispersion relationship is simply a statement that cp is determined by environmental

parameters. In the case of the class of shallow-water gravity waves (swell, tsunamis, and to an approximate

degree tides are examples) we have cp = (gh)1/2, where g is the surface gravity acceleration and h is the water

depth. Rossby waves in the long wavelength limit are another example of nondispersive waves with a phase speed

set by environmental parameters. For dispersive wave classes, cp = cp(κ) may be regarded in the spherical domain

as cp = cp(n). In all cases, we see that explicit reference to the frequency or time scale is removed from the first

two factors in (3.5). This amounts to applying the constraint that the fluid process considered corresponds to the

wave class of the dispersion relationship assumed.

3.4 Relationship between electrodynamics and fluid sources

There are cases where the magnetic field generated by motional induction shows simple or intuitive relationships

with flow parameters and variables. A well known example is an extension of the frozen-flux theorem. If magnetic

diffusion can be ignored, the thin-shell electrodynamics shows

∂tBr −∇H ·
(
Brū

∗
H

)
= 0 (3.10)

and can be interpreted as the situation where Br is conserved by the conductivity-weighted flow. Writing (3.10)

as

∂tBr = −ū∗ · ∇HBr −Br∇H · ū∗
H = 0 (3.11)

we see more explicitly that Br changes in time due to advection by the flow and by bundling of the field lines by

divergences/convergences in the flow. The result is that in the thin-shell scenario, the induction and continuity

equations can be combined to show that in the absence of magnetic diffusion Br/h is approximately a constant

(i.e. invariant in time) from a Lagrangian perspective following a fluid parcel.

A second example is provided where we also usefully impose as a constraint mass conservation, expressed

here as the continuity equation

∂tη +∇ · (huH) = 0, (3.12)

where η is the surface displacement. In cases where we may assume

F =−∇H ·
(
Fru

∗
H

)
= −∇H ·

(
Fr

(Σoc/h)

Σ
huH

)
≈ −Fr

(Σoc/h)

Σ
∇H · (huH) ,

we can use the continuity equation to write (3.5) as

br(r = a)

Fr(r = a)
=

(
cp
cs

)(
1

1 + n+1
n

cp
cs

(
rm
a

)2n+1

)
Σoc
Σ

(η
h

)
(3.13)

Ignoring sediment conductance and the reflecting layer, this is more simply

br(r = a)

Fr(r = a)
=

(
cp
cs

)
η

h
, (3.14)

from which we see that the fractional amplitude of the magnetic field is proportional to the fractional amplitude of

the sea-surface displacement, as in (Tyler, 2005). The complex proportionality constant is given by the important

ratio of speeds cp/cs.
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3.5 Estimates of missing galvanic currents

As described in previous sections, the thin-shell induction equation does not include galvanic contact with neigh-

boring regions. While an insulating lower atmosphere may strongly justify the lack of galvanic contact between

a conducting surface shell and conducting upper atmosphere, the galvanic insulation between a surface shell and

the mantle may be more questionable. Here we attempt to estimate the effect of the missing galvanic currents.

To start, we expect that for otherwise similar surface sources, galvanic penetration is strongest for a steady

(rather than oscillating) source because sufficient time has been allowed for the electric currents to penetrate

more deeply and use a greater volume of the mantle, thereby providing less resistance to the currents. We expect

then that estimates based on the simple quasi-static electropotential formulation described in Appendix F can

provide conservative estimates of the length scales/degree at which the galvanic currents become important. For

this application we may rewrite the thin-shell electropotential equation (F.5) as

Σ∇2
Hφ+ jr(r = a− h0) = F (3.15)

where Σ is assumed uniform, jr(r = a) = 0 because galvanic contact with the poorly conducting domain

above the shell is ignored, and F represents an abitrary source. The term jr(r = a − h0) = 0, representing

electric currents passing between the thin shell and conductive mantle, couples (3.15) with (F.6) such that these

equations must be solved simultaneously. More explicitly, the coupling occurs as jr(r = a − h0) = −σm(r =

a − h0)∂rφm|r=a−h0
is required for continuity of electric current crossing the interface. For the purposes here,

we may consider two alternative descriptions for the mantle conductivity that allow us to analytically combine

the equations to provide the desired estimates.

First, note that for uniform mantle conductivity σm, (F.6) reduces to ∇2φm = 0 which must be solved

together with the continuity condition φm(r = a − h0) = φ, and boundedness as r → 0. Through spherical-

harmonic expansion, an immediate solution for the mantle domain that satisfies these equations and conditions

is then

φm =
∑
n,s

φ[n,s]

(
r

a− h0

)n
Ssn, (3.16)

where φ[n,s] is a spherical harmonic coefficient of φ, the potential in the thin shell. We then perform a similar

expansion of (3.15), while substituting using (3.16) and including standard results for the derivatives of spherical

harmonics (evaluated at r = a− h0), to obtain the analytical solution

φ =
∑
n,s

φ[n,s]S
s
n = −

∑
n,s

(
n(n+ 1)

(a− h0)2
Σ +

n

a− h0
σm

)−1

F[n,s]. (3.17)

From this solution we see that for each spherical-harmonic component, the effect of the conducting mantle is

to reduce the potential by a factor
(

1 + a−h0

n+1
σm

Σ

)−1
. Evidently, when a−h0

n+1
σm

Σ is small this factor approaches

unity, indicating that galvanic contact with the mantle is unimportant.

4 Numerical solution method

In the following subsections below, we first describe the requirements and important considerations for designing a

numerical solution method for the thin-shell induction equation. This primarily involves choices for discretization

and representation that set up a linear system of equations to be solved. We then describe two methods for solving

the system of linear equations. The first, fixed-point iteration, has predictable convergence properties. Perhaps

more importantly, the derivation of this method provides important suggestions for designing a preconditioner

for use in much faster Krylov-subspace solution methods. While Krylov methods such as bicgstab and gmres

can produce much faster convergence rates (compared to convergence rates in the fixed-point method), for most

thin-shell applications one will find that the Krylov methods do not converge unless a very good preconditioner

is applied. Success in the Krylov-space approach is then contingent on finding an appropriate preconditioner.
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4.1 Initial considerations

In this section we describe an efficient and accurate numerical approach for solving (2.87). The choice in approach

follows from a number of considerations. First, we expect that we cannot make any advance assumptions on

the relative importance of self induction and magnetic diffusion. Hence, we cannot follow previous numerical

approaches that essentially iterate from a solution obtained where one of these processes can be assumed to

dominate. We assume that the electrical parameter cd in the thin shell is inhogeneous with an extremely large

range of values. We therefore shall not seek methods that iterate from a solution involving homogeneous cd. We

assume that the method must allow simultaneously for both global coverage and high spatial resolution. Because

the driving sources can include ocean dynamical flow, we do not want the method to involve interpolation or

other transforms in which important dynamically conserved properties are sacrificed in the process of bringing

the flow-dependent terms into the numerical method. To provide support for extensions into inverse modeling,

we want the method to be not just computational feasible but fast. Finally, we want the method to provide the

potential for solving the equations to high accuracy.

Note that spherical-harmonic decomposition is probaby the best approach when considering the domains of

the insulators or regions where K is radially symmetric. The reason is that fast spherical-harmonic numerical

transforms are available, and solutions in these domains can be calculated analytically or through integration of

an ordinary differential equation, thereby reducing the dimensionality of the problem.

There are, however, strong disadvantages of spherical-harmonic methods applied to the inhomogeneous thin

shell. One can consider that while numerical methods using spherical-harmonic bases have been popular in

atmospheric dynamics, they have not been common in oceanography. The reason is the non-local nature of the

spherical-harmonic functions presents difficulties in representing regional subdomains, boundaries, and sharp

transitions in parameters. Finite-difference/volume/element methods have been more popular in oceanography

because the local discretization allows one to check or adjust the local representation of elements. One may wish,

for example, to ensure that the total cross section of an ocean strait is correctly represented and this is possible

with the locally discretized methods. With spherical harmonics, the representation is no longer local and harder

to check or control. These checks and controls are also difficult when representing oceanographic dynamical flow

components. Finite-difference models are most commonly used in ocean models. These methods commonly involve

flux-conservation to preserve dynamical conservation principles and so they can be considered as finite-volume

models.

The method we follow is a hybrid that combines the best elements of both approaches. We use finite-

difference/volume discretization within the thin shell and spherical-harmonic methods in the other domains.

Where the source terms are given from a numerical ocean model, the method anticipates the thin shell being

discretized using the same native grid from the ocean model. In this way full dynamical consistency in the ocean

dynamics is retained when represented in the electrodynamic model. Sacrificing this consistency can produce

errors even at lowest order (though typically spreading only through a local stencil of grid points). As a quick

example, note that the flow sources of the thin-shell induction equation can be expanded to include leading terms

proportional to either ∇· (huH) or ∇· (uH). There are, however, flow applications (e.g. steady flow, geostrophic

flow) where either or both of these divergences vanish. If these divergences are calculated from interpolated ocean

parameters they may primarily represent interpolation errors rather than dynamics.

The method we seek shall treat the temporal dependence only parametrically such that the symbol ∂t, where

it appears, can be treated as a uniform, potentially complex coefficient. Although this is not strictly limiting as

more general cases with time dependence may be treated, for example, through summation of Fourier components,

the details of such are not included in the scope of this paper.

4.2 Fixed-point iteration method

We see by (2.46) that for all but the lowest degrees n, M[n,s] ≈ B[n,s] and we may therefore expect as an

approximation M ≈ B(r = a). Let us rewrite (4.1) as
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∂t∂rB|r=a +∇H ·
(
∂rB|r=auH∗)+∇H · (cd∇HB|r=a)

= F(d) + F(p), (4.1)

where the right side includes the prescribed terms

F(p) = −∂tF (p)
r −∇H ·

(
F

(p)
r uH − urF(p)

H

)∗
(4.2)

as well as dynamic (solution-dependent) terms

F(d) = −∂tF (d)
r −∇H ·

(
−ur

(
∇HB|r=a + F

(d)
H

))∗
+Q, (4.3)

where

Q = ∂t (∂rB|r=a − LaM) +∇H ·
(
(∂rB|r=a − LaM) uH

∗)+∇H · (cd∇H (B|r=a −M)) (4.4)

is an expectedly small correction term due to the small inequality betweenM and B(r = a). Following thin-shell

approximations previously discussed and the expectation that F(d) represents a presumably secondary field with

smaller amplitude than the inducing primary, the first and second terms in (4.3) can be regarded as correction

terms that are weak relative to terms retained on the left side of (4.1).

Now note that the term ∂rB|r=a can be represented by the simple first-order, forward-step, finite-difference

approximation

∂rB|r=a =
B (r = a+∆r)−B (r = a)

∆r
, (4.5)

although in what follows we shall use the second-order approximation

∂rB|r=a =
−1

2B (r = a+ 2∆r) + 2B (r = a+∆r)− 3
2B (r = a)

∆r
(4.6)

to retain consistency with the second-order approximation available for other terms. In these finite-difference

approximations, one expects accuracy to increase with smaller choices of the radial step ∆r. There are, of course,

limits to this improved accuracy with smaller ∆r. An immediate one is set by the thin-shell assumption. As ∆r

becomes comparable to the thickness of the thin shell, the limits of the thin-shell approximation are reached.

Let us define the operators

L1 [·] = ∇H · [cd∇H [·]] , (4.7)

L2 [·] = − 1

∆r

(
∂t [·] +∇H ·

[
[·] uH∗]) . (4.8)

Applying (4.6–4.8) to (4.1), we write

L3 [B (r = a)] = F, (4.9)

where

L3 = L1 +
3

2
L2 (4.10)

and

F =

{
2L2 [B (r = a+∆r)]− 1

2
L2 [B (r = a+ 2∆r)]

}
+ F(d) + F(p). (4.11)

Observe that the left side of the equation (4.9) involves operation only on the boundary value (B(r = a)) of

the variable. The right side gains a new component (in curly brackets) which, because of geometric attenuation
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(|B(r = a)| is larger in amplitude than |B(r > a)|), is weaker than the term L3B (r = a) retained on the left

side.

Let us assume that for given F there is an analytical or numerical procedure available to solve (4.9), obtaining

a solution which we describe symbolically as B (r = a) = L−1
3 F. We now consider the fixed-point iteration

B(k+1) (r = a) = L−1
3 Fk, (4.12)

where B(k+1) is the solution at iteration k + 1, and F(k) is evaluated from (4.11) assuming B = B(k). (The

components in F(k) involving B(r > a) as well as F(d) can be calculated following spherical-harmonic expansion

methods described in previous sections.) Independent of the specific analytical or numerical method chosen for

solving (4.12), it is expected that the iterative scheme (4.12,) converges to the correct solution as k increases.

4.3 Krylov-space iteration method

The fixed-point iteration method has the advantage of a predictable convergence but other methods are available

that may converge more quickly. Krylov sub-space solvers are highly efficient at solving large, sparse linear

systems provided a suitable preconditioner can be designed. In solving the linear system Ax = b for x, where A

is square matrix and x, b are vectors, Krylov methods have an additional advantage in that one need not directly

specify A. Rather, one need only specify a procedure for producing the matrix-vector product Axg, where xg is

presumably a trial solution vector during an iteration.

Specific Krylov-space methods that can be applied to the non-symmetric matrices expected include gmres

and bicgstab. In a variety of applications to the realistic global Earth, we have found that use of either of these

methods converges quickly when the method is first preconditioned using a matrix representing the discretized

operator L3 (or approximated versions) described in (4.2). Contrarily, experiments with either a simplistic or no

preconditioner assigned fail to converge.

Because in the Krylov method only a procedure for producing the matrix-vector product is required, one

may solve (2.87) without moving solution-dependent correction terms over to the right side of the equation. The

reason why this was done in the fixed-point method in the last section is partially due to the difficulty in building

the coefficient matrix in this hybrid case involving both finite-difference and spherical-harmonic discretizations.

The procedure for building the matrix-vector product on the left side of (2.87) is as follows:

1. Select a grid for the two-dimensional global surface. It is advisable to adopt the native grid on which the

ocean parameters are available. On the staggered Arakawa C grid in spherical coordinates, for example, define

M on the cell center grid points and cd on the cell face points.

2. Perform a spherical-harmonic expansion of M ; apply the operator L, and then perform an inverse transform

(i.e. sum over the harmonic components) to bring LM back onto the grid.

3. Construct flux-conserving finite volumes around each grid point (as this is in two-dimensions, one can interpret

the “volume” to include a unit radial height.)

4. Integrate (2.87) over each volume and apply Gauss’ theorem to replace divergence operations with flux

summation over the faces of the volume.

5. The volume integrated equations retain terms with n̂ ·∇M (where n̂ is the outward unit vector normal to the

volume face) that must be evaluated at the volume faces. Evaluated as simple first-order differences between

neighboring grid points, the diffusion operator is represented with second-order accuracy. The parameter cd is

needed only at the volume faces (not at the center of the volume) and should be taken from the ocean model,

where possible, rather than through interpolation. (Typical ocean models involve staggered grids where, aside

from the grid points for the centers of the volumes, there are also grids associated with the location of the

faces. To obtain the ocean conductance at the faces (needed for cd), one should not calculate the conductance

at the center points and interpolate to the face points. Rather, one should interpolate only the depth-average

conductivity and multiply this by the depths that are usually also provided at the face grid points in the

ocean model.)
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6. The calculation of a preconditioner matrix should follow steps consistent with those above (see also Section

4.2).

To build the forcing terms on the right side of (2.87), the procedure also follows some of the steps above. When

motional (flow) sources are involved, special care should be taken with element (5.) to ensure that dynamical

consistency is retained. We provide here a specific demonstration. In typical cases one may assume

−∇H ·
(
F

(p)
r uH − urFH

)∗
≈ −∇H ·

(
F (p)
r ū∗

H

)
.

In computing this from ocean model data, it is better to first rewrite this term as

−∇H ·
(
F (p)
r ū∗

H

)
= −∇H ·

(
cd
µ0

2
F (p)
r Tσ

)
, (4.13)

where Tσ =
∫
h
σuHdr is the conductivity transport (calculated in a manner that is dynamically consistent with

other weighted transports in the ocean model). In evaluating this term in the steps above, one then specifies cd
at the volume faces precisely as done for the diffusion term. Similarly, one should rewrite and consider the second

term in (2.87) as

∇H ·
(
cd
µ0

2
L[M ]Tσ

)
. (4.14)

With these careful steps, one may then retain the full dynamical consistency with the fluid dynamics as

calculated in the ocean model. Contrary examples where interpolation is applied unnecessarily or inconsistently

can produce errors in the forcing terms even at lowest order of approximation. The reason these errors can

reach the lowest order is ultimately due to the fact that in geophysical fluid dynamics there are many important

examples where the horizontal flow and/or transport vectors are approximately non-divergent. This means that

components of the forcing can happen to have lowest-order terms that vanish due to the dynamics. The next

order terms in an approximation series then lead, and could even predominantly represent interpolation errors.

If the ocean model data is given on a grid that is of much higher resolution than what one wishes to retain

in the grid for the electrodynamics, or for any other reason that the native ocean model grid cannot be adopted

for the thin shell electrodynamic model, one should first complete the divergence calculations on the native grid

and interpolate the whole forcing term rather than interpolating components within the divergence operator.

To understand why this is important, consider that interpolation of the divergence of a vector can be far more

accurate than the divergence of an interpolated vector. As a clear example, consider a divergence free vector field.

If one calculates the divergence and then interpolates, one retains the vanishing divergence on the new grid. If,

however, one interpolates the vector field to the new grid and then calculates the divergence, the result need not

vanish and is highly sensitive to the interpolation scheme chosen.

Because this numerical approach is sparse and efficient, it should be easily feasible to adopt even the highest

resolution global grids used in oceanography. Any reason for not using the native ocean grid will probably not come

from poor computational performance on the native grid. Even if one does not need the high spatial resolution

in the ocean model for the electrodynamics, it is advisable to nonetheless adopt the native grid. While the steps

above assume that the ocean model uses a finite difference/volume approach, the instructions can be easily

adapted to finite-element and other ocean-model approaches. Basically, the operators that must be discretized

for the thin-shell electrodynamics are included within the selection of operators that must be formulated for the

ocean dynamical models. So one should generally be able to retain dynamical consistency provided the numerical

operators for the electrodynamics in the thin shell are composed in the same way as in the ocean model from

which the ocean parameters and flow are taken.

Finally, some comments on the details of the step for the spherical-harmonic transform are needed. A number

of methods are available to perform the transform. The one used by this author (based in Gaussian-Legendre

quadrature and written in Matlab) is very fast and allows very high truncation degree. But it involves an interpo-

lation step that should not be confused as vulnerable to the important concerns described above. The transform

is fast but requires that the data to be transformed be provided on a grid representing the Gaussian-Legendre
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nodes required for Gaussian quadrature integration over the sphere. Because this grid does not necessarily co-

incide with the native grid of the ocean model, interpolation is required. But note that this step involves only

interpolation of the magnetic potential, and one is interpolating onto a grid with a resolution that can be adjusted

by the selection of the spherical-harmonic truncation degree chosen. One may then limit the interpolation errors

by increasing the truncation degree.

In selecting the truncation degree of the spherical harmonic expansion, the safest approach is to match or

exceed the truncation degree that provides spatial resolution similar to the grid spacing used. The correspondence

is not exact because it depends on the form of fields one wishes to represent, and because the longitudinal

resolution of the grid is not uniform over the globe but rather increases poleward. One may, however, consider

here a correspondence drawn from the highest wave numbers that can be represented in each. With the finite-

difference/volume approach, the highest wave number that can be represented is κFD = 2π
NFD

1
a∆θ , where ∆θ is

the largest angular step (in radians) between adjacent grid points, and NFD is the number of grid points one

expects are needed to accurately resolve a wavelength. In the spherical-harmonic representation, one may draw

from the form of the Laplacian of a degree-n harmonic, to propose the wave number
(
n(n+1)
a2

)1/2
. The highest

wavenumber resolved is then κSH =
(
N(N+1)

a2

)1/2
, where N is the truncation degree. The truncation degree

N needed to resolve (with NFD grid points) the highest wavenumber representable on the grid (with angular

spacing ∆θ) is then obtained by equating the two wavenumber formulae. We have

N =
1

2

−1±

(
1 + 4

(
2π

NFD∆θ

)2
)1/2

 , (4.15)

which, assuming N >> 1, is approximately

N ≈
(

2π

NFD∆θ

)
. (4.16)

One should expect that NFD ≥ 2 even in the most poorly resolved cases, and accurate descriptions probably

require NFD ≥ 10. One may safely assume then that by taking N ≥ π
∆θ the spherical-harmonic representation

has at least as good resolution as the grid.

4.4 Validation with analytical solutions

Here we compare solutions obtained using the numerical approach of Section 4.3 with analytical solutions de-

rived in Section 3. Specifically, we use the gmres solver (Saad, 1995) restarted every 10 iterations and with a

preconditioner described by the matrix inverted in the initial iteration of the fixed-point method, as described

in Section 4.2. The discretization is coded in Matlab using sparse arrays, and elements are accessed through

vectorized calls (rather than for-loops) such that memory use is efficient and the processing is implicitly parallel.

The tolerance for satisfying the (preconditioned) system is set to 10−12. The domain of the shell is represented

on a 1/6-degree longitude by 1/6-degree latitude global grid. The domains outside of the shell are represented

with a spherical-harmonic truncation degree of N = 1200 (exeeding the N = 1080 that would be required using

(4.16) with NGP = 2).

For the configuration, we consider uniform conductance of Σ = 1.5× 104 S over a sphere of radius a = 6371

km. The conducting shell is assumed to occupy a vanishgly thin layer of thickness h0 (to remain consistent

within the error of the horizontal spatial resolution chosen below, one should assume h0 ≤ 10 km). The uniform

conductivity within the shell is then σ = Σ/h0. We assume domains outside of the shell are insulators although

we consider cases first without and then with a perfectly reflecting layer at a depth r = a− 500 km.
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We evaluate the numerical solution for the radial component of the magnetic field at r = a due to a simple

prescribed source:

u× F = R
{
−a2

n(n+ 1)
∇HΨ[n,s] × r̂

}
=

−a2

n(n+ 1)
∇H (P sn cos(sφ+ ωt))× r̂, (4.17)

where the spherical harmonic Ψ[n,s] = P sne
i(sφ+ωt), P sn is the schmidt-normalized associated legendre function

of degree n, order s, φ is eastward longitude, and ω is the frequency of the M2 principal lunar semi-diurnal tide

having a period of 12.42 hours. This reflects a westardly propagating source at the M2 period (which, for this

conductance value, is ideal for testing as it is located between frozen-flux and diffusive regimes). Note that in this

case the source in the thin-shell induction equation is simply −∇H ·
(
F

(p)
r uH − urFH

)∗
= ∇· ([u× F]× r̂) =

−∇ · (Fru) = Ψ[n,s].

We evaluate the numerical solution by comparing it to the analytical expressions (3.8, 3.9). We expect

∂tbr,[n,s](r = a) + ∂tF
(d)
r,[n,s](r = a)

Ψ[n,s]
=

(
cp
cs

)(
1−

(
rm
a

)2n+1

1−
(
rm
a

)2n+1 cp
cs

)
, (4.18)

where the left side is the time rate of change of the total radial magnetic field (divided by Ψ[n,s]) and the right

side describes the essential response function. The case with no reflecting mantle is included by letting rm/a→ 0.

We first consider the case with no reflecting lower layer and n = 5, s = 5 (the matching of degree/order is a

good choice because it places the anomaly near the equator where the model resolution is lowest). Plots of the

numerical and analytical solution appear identical. The fractional misfit error (as represented by the root-mean-

square of the differences divided by the root-mean-square of the analytical field itself) is 1.07 × 10−5, which is

well within the expected grid resolution error of 5.29 × 10−5 following (4.16). Recall that the latter error does

not describe inaccuracy in model perfomance (because the grid resolution can be increased) but rather sets a

benchmark for validation. Model errors within this value then indicate that the model is working correctly to

within an accuracy that can be expected given the grid resolution.

A second case, identical to the first but with the reflecting layer included shows similarly small errors. The

choice of n = 5 was made to provide comparable amplitudes in the magnetic fields from the shell and from the

reflecting layer (that from the reflecting layer is about half that from the shell). The fractional misfit error in the

total radial magnetic field is 1.45×10−5, while that of the parts from the shell and reflecting layer separately are

2.42 × 10−5 and 9.77 × 10−6, respectively. (The fractional error in the part due to just the shell can be larger

than that of the total fractional error because the reflecting mantle reduces the total amplitudes.) Again, these

errors are with the value of 5.29× 10−5 following (4.16).

To test the performance of the model in the expected high-resolution limit, we repeat the cases above but

with n = 200 and s = 200. With the grid resolution described, it is expected that the model should indeed be

able to produce solutions to within the grid-resolution error described by (4.16). Indeed, for the case without a

reflecting layer, we find a fractional error of 0.0284, which falls within the 0.0846 expected from (4.16). For the

case with a reflecting layer, the errors are 0.0284, 0.0284, and 2.13 × 10−6 for the total, shell, and reflecting

layer parts, respectively. Again, these errors are within the 0.0846 expected from (4.16).

5 Application to Earth

The formulations presented are relevant to a wide variety of applications involving electrodynamics near the

surface of the Earth. The scope in this study does not include a survey of these applications or associated

phenomena. Rather, examples are chosen only for the purposes of illustration and for evaluating some of the

approximations made in the thin-shell formulation.
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5.1 Basic electrical parameter values

The surface water and hydrology on Earth create a shell near the surface with relatively high electrical conduc-

tivity when compared to that of the lower atmosphere or upper mantle. The higher conductivity primarily comes

from the disassociated ions (dissolved salts) arising from contact of water with rock. This contact may take place

in the sediments below water bodies, from water running over land, and from water permeating the subsurface.

The result is an expected near-spherical shell at the surface with relatively high conductivity.

The thin-shell formulation assumes that the shell is both geometrically and electrically thin, with the result

that it is only the depth integral of conductivity (i.e. conductance, Σ) that is the fundamental electrical parameter

describing this shell. The conductivity of seawater depends on temperature, salinity, and to a small degree

pressure. A three-dimensional, globally gridded data set of ocean conductivity has recently been created from an

exhaustive objective analyses of observations (Tyler et al., 2016). The associated ocean conductance is shown in

Figure 1 (top panel). Also described in Tyler et al. (2016), the temporal/seasonal variability in the conductance is

relatively small and so this data set is expected to provide an accurate description of the ocean conductance. The

sediment conductance (shown in Figure 1, middle panel) estimates the water content from age-dependent porosity

and the sediment thickness from seismology. The accuracy of the sediment conductance estimates is expected

to be much less than that of the ocean conductance. Finally a rather negligible contribution to the conductance

is allowed for by the conductivity within the igneous rock. These combine to give the total conductance of the

surface shell shown in Figure 1 (bottom panel).

From the point of describing the electrodynamics in the shell, we found that the lateral adjustment speed

for the magnetic diffusion cd = 2
µoΣ

is what is relevant. This parameter is shown in Figure 2 (top panel). We

see that over the open ocean cd shows values of the order of hundreds of meters per second and the values

quickly increase in shallow regions. This should immediately indicate that magnetic diffusion is relatively fast

when considering most motionally-induced phenomena as phase speeds associated with the fluid dynamics are

often much smaller. But an important exception is the class of long gravity waves (and potentially long Rossby

waves). These “long” waves are more often referred to as “shallow-water” waves in terrestrial applications. But

familiar examples are found for both deep-water (e.g. tsunami) and shallow-water (e.g. swell) regions. This class of

waves simply involves wavelengths much larger than the ocean depth, and gravity as the primary restoring force.

These waves are of fundamental importance in the dynamical adjustment of a wide variety of fluid-dynamical

processes because they travel relatively fast. Exceptions, notably acoustic waves, may travel faster but have an

incomplete dynamical sensitivity to the process or frequency range considered. When considering a wide range

of geophysical dynamics, one may loosely regard the shallow-water wave speed as the maximum speed at which

dynamical information can propagate.

The shallow-water wave speed cg = (gh)1/2 for Earth’s ocean is shown in Figure 2 (bottom panel). The phase

speeds of order 100 m/s, are comparable to cd in the open ocean, though typically about twice the amplitude.

In this case, the terrestrial ocean expresses open-ocean waves for which the electrodynamic process is roughly

situated between the frozen-flux and diffusive regimes. Inductive external sources with apparent propagation due

to the Earth’s rotation will also have associated phase speeds comparable to that of the open-ocean value of cd.

Hence, there are important examples where calculations of the electrodynamics near the surface of the Earth can

use neither frozen-flux approximations nor quasi-static approximations. There are examples (e.g. shallow water

and/or lower frequency sources) where the processes fall in the diffusive regime and quasi-static assumptions

apply. But cases where a strong frozen flux assumption can be applied are less apparent. In the electrodynamics

near the surface of the Earth, one expects then that magnetic diffusion is always important while self-induction

is important in some cases involving phase speeds comparable to the speed of cd.

5.2 Criteria for electrically thin ocean

The thin-shell formulation presumes that the shell is electrically thin. This subsection uses values for the con-

ductivity of Earth’s ocean to describe the specific criteria for validating this assumption.
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Fig. 1 The electrical conductance of Earth’s surface shell (bottom panel) is primarily due to the ocean (top panel) and,
to a much lesser degree, wet sediment (mid panel) components of the hydrosphere.
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Fig. 2 Top panel: Lateral adjustment speed cd (m/s) for magnetic diffusion. Bottom panel: shallow-water wave speed cg
(m/s).

Fig. 3 Critical period τc (min). When considering periods/time-scales much larger than τc , the ocean layer is electrically
thin (i.e. the electromagnetic skin depth is much larger than the geometric depth).

As described in the last subsection, most of the conductance of the thin shell is due to the conductance of the

ocean, which is known accurately, and the estimate of the smaller component due to sediments is less reliable.

We shall therefore make the next estimates based on just the ocean layer.

The ocean layer is electrically thin if the frequency-dependent skin depth Le = (2K/ω)1/2 is much larger

than the physical thickness h. Assuming depth averages, we can write this criterion as τ >> τc , where τ is the

period/time-scale considered and
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Fig. 4 Amplitude (top panel) and phase (bottom) of the ratio cp/cs for processes mediated by long gravity waves (in
which case the phase speed is cp = cg = (gh)1/2. An interesting aspect of the terrestrial case is that the amplitude of the
ratio is close to unity over most of the ocean—indicating that for this important class of flow, self induction and magnetic
diffusion are equally important.

Fig. 5 Amplitude and phase of the approximate response function as a function of the ratio cd/cp (in this case, cp = cg =

(gh)1/2) and fractional radius of a perfectly reflecting layer representing the lower mantle. One expects that rm/a may be
as high as ≈ 0.9 for some applications. Most of the applications on Earth are expected to fall in the lower sections of these
diagrams. It is clear, however, that inductive coupling with the mantle is important when considering the largest spatial
scales.
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Fig. 6 To first order, geostrophic flow in Earth’s ocean does not interact with the main magnetic field. Induction occurs
only as a second-order effect where flow crosses contours of Σoc

Σ
Br
f

(top panel). The factor Σoc
Σ

includes an uncertain
component due to sediment conductance, although it is expected that this ratio is near unity over most of the deep ocean.
In this case, the relevant contours are of Br

f
(bottom panel).
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Fig. 7 Reduction factor on electric potential due to galvanic electric currents in the mantle. An expected underestimate

is presented by the reduction factor
(

1 + a−h0
n+1

σm
Σ

)−1
in frame A, while an expected overestimate is presented by the

reduction factor
(

1 +
(a−h0)2
n(n+1)

σm
dΣ

)−1
in frame B. The black curve shows the value 0.9 separating the region on the left

where reduction is less than 10 percent from the region on the right where reduction is greater. The effects of unmodeled
lateral inhomogeneities in the mantle introduce uncertainties that may be at least 10 percent and so a deficiency in the
thin-shell approach appears only for combinations of assumed σm and n to the right of the black curves.

Fig. 8 Critical period (days) as a function of ocean depth-averaged conductivity and geometric thickness (values run off
scale above 15 days). The satellite oceans are electrically thin if the ocean thickness is thin and/or the conductivity is low.
Europa’s ocean thickness falls within the horizontal dashed lines, and the solid curve describes the 85.2 hr period of the
primary induction signal due to Jupiter’s rotating field. The 11.1 orbital period of Europa is shown with the dashed curve.

τc = πµ0hΣoc (5.1)

is the critical period at which Le = h. A map of τc, shown in Figure 3, shows that for processes with periods/time-

scales above about 10 minutes, the global ocean is indeed electrically thin. In exclusively shallower regions, this

criteria can be met with shorter periods.

An important result for the application of Earth is then that for time scales longer than about ten minutes, one

can efficiently replace the 3-D computational domain of the ocean with a 2-D domain involving depth-averaged

variables.
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5.3 Motional induction constrained by fluid dynamics

As described, magnetic diffusion is important when cd becomes comparable to or larger in amplitude than the

phase speed of the process. While the phase speed can be set by space and time scales associated with prescribed

forcing or parameter variations, an interesting case is one where the phase speed is set by the fluid dynamics. This

was discussed in Tyler (2005) where the electrodynamic response is set by the ratio cp/cs and cp is constrained

by a dispersion relationship for the fluid dynamic wave process considered. In Section 3.2, cs = cp + (1 + 1
2n )icd

gains a small dependence n due to sphericity. For simplicity, we shall here ignore the small dependence on n and

treat cs = cp + icd, as in the initial Cartesian derivation (Tyler, 2005). In this case, the response function is

specifically cp/cs.

As an example, we consider here the important class of long gravity waves for which we may take cp = cg =

(gh)1/2. The response function cp/cs is then an environmental parameter that applies for all cases of long-gravity

wave dynamics in Earth’s ocean. The amplitude and phase (i.e. argument) of the complex ratio (cg/cs) is plotted

in Figure 4.

The long gravity wave speed should probably be regarded as a maximum phase speed for ocean fluid wave

dynamics. The maximum phase speed of long dispersionless Rossby waves converge with this limit and a large

suite of other wave classes have slower wave speeds. It should be expected then that in Earth’s ocean, all

electrodynamics associated with wave phenomena appreciably involve magnetic diffusion and that magnetic

diffusion even dominates for all cases with lower phase speed than the long gravity wave limit. In these latter

cases where cp << cd, the response function cp/cs is then imaginary, indicating that the response is 90 degrees

out of phase with the forcing.

When a reflecting lower layer (representing the conductive lower mantle) is included the response function of

the ocean/mantle system (see Section 3.2) is instead(
cp
cs

)(
1−

(
rm
a

)2n+1

1−
(
rm
a

)2n+1 cp
cs

)
.

The additional factor, representing a reduction in the amplitude of the response due to reflection by the lower

layer, contains a dependence on the degree n and therefore the length scales in the application considered. Even

when cp is fully prescribed, as in the example of the long gravity waves above, the dependence of this second factor

on n means that the response function is no longer an environmental parameter prescribable for the general flow

class considered. Of course for wave classes without the trivial dispersion relationship as above, we should expect

cp = cp(n). So in general we should expect that the response function depends on environmental parameters and

the dynamical parameter n. One might use the appropriate dispersion relationship to replace the need to specify

n (the spatial frequency) with the parameter describing the temporal frequency. The important point here is that

both parameters need not and, for dynamical consistency, should not be chosen independently.

Despite the dependence on n of the response function described in the last paragraph, one may consider some

limiting cases to evaluate the effect of the reflecting lower layer. Of course for rm/a → 0 (no reflecting layer),

an effect is absent and the response function remains as cp/cs. For rm/a ≈ 1 (the situation where the reflecting

layer is very close to the surface shell), br = −F (d)
r . The behavior between these limits can always be found

by inserting parameter values in the response function above. Aside from the end members associated with the

limits in rm/a, a third limiting case is described in Figure 5. In choosing this case, we first note that the factor

due to sphericity (1 + 1
2n ) ≈ 1 for all but the smallest n choices. Ignoring the n-dependent sphericity factor, the

behavior of the response function is plotted as a function of the real parameters cd/cp and
(
rm
a

)2n+1 in Figure

5. Additionally, the continents break up the largest scales such that realistically there is expected to be a sharp

drop in energy below n ≈ 5 . From these considerations and others, one expects that applications for Earth to

typically fall in the lower section of these diagrams. Inductive coupling with a lower mantle is clearly important

for the largest spatial scales possible.
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5.4 Non-dynamo action of geostrophic flow

As described in Section 2.3.5, geostrophic flow does not efficiently generate radial magnetic field components when

the background magnetic field is predominantly an axis aligned dipole. Specifically, induction by geostrophic flow

is a second-order process (i.e. the first-order terms vanish both because of symmetries between the background

main field and the Coriolis parameter, and because of the approximate non-divergent nature of geostrophic flow.)

Motional induction by geostrophic flow occurs only where flow crosses contours of the parameter Σoc

Σ
Br

ρf .

The Earth’s main magnetic field is primarily an axis aligned dipole, and flow varying on time scales longer

than a day is primarily geostrophic. An important and immediate result is that much of the flow in Earth’s ocean

does not efficiently interact with the main magnetic field to generate horizontal electric currents and (poloidal)

magnetic fields reaching outside of the ocean.

While Σoc

Σ
Br

ρf is approximately uniform in the case of Earth, the departures are informative for understanding

the motional induction process in Earth’s ocean. In Figure 6 the contours for both Br

f and Σoc

Σ
Br

f are shown.

5.5 Galvanic currents

The thin-shell induction equation can include excitation of electric currents in the mantle through inductive

coupling but galvanic coupling is omitted. The purpose of this section is to estimate the error associated with

this approximation using typical parameters describing the surface conducting layer of the Earth.

Because the thin-shell conductance includes the conductance of both the ocean and sediment layers, galvanic

electric currents circulating within the ocean and sediment layers are implicitly included. But galvanic electric

currents penetrating deeper into the mantle are not included in the thin-shell formulation. The basis for an

approximation that ignores the deeper galvanic currents is that estimates of the conductivity of the upper mantle

are typically two to four orders of magnitude smaller than that in the ocean or wet sediments. Still, for extremely

large-scale (low spherical-harmonic degree n) processes, penetration of substantial galvanic electric currents may

take place due to the very large surface areal cross section as noted in the study of Stephenson and Bryan (1992)

(where galvanic connection with the mantle was also omitted).

To estimate this reduction factor using typical parameters, we first make a few remarks:

1. We do not expect sources at the surface to produce monopole electric potentials (i.e. n 6= 0), and for very

high degree (e.g. n > 2000) the small spatial scales described must become inconsistent with the thin shell

assumptions; but otherwise n has a very large expected range.

2. Away from very shallow regions and land, the surface conductance Σ is primarily due to the conductance

Σoc of the layer of seawater, with a relatively smaller contribution to Σ from the conductance of sediments.

3. While Σ shows a large range over the ocean (see 1) primarily due to the large variation in ocean depth,

regions with small Σ are not of very large spatial scale (therefore an assumption of both small n and small

Σ is unrealistic) and we therefore take a mid-ocean value of Σ = 1.5× 104 (S) as representive.

4. The value for σm is uncertain and, as with n, we should consider a range.

5. For the analyses here, a− h0 ≈ a ≈ 6.371× 106(m).

With these values, we plot the electric potential reduction factor
(

1 + a−h0

n+1
σm

Σ

)−1
, as derived in Section 3.5, in

Fig 7 (A) as a function of σm and n. If we assume a typical value for the upper mantle σm = 10−3 (S/m), then

we see that the effect of the galvanic currents is to reduce the potential by no more than 10 percent even for the

lowest degrees. If we assume the effects of the unmodeled and largely unknown lateral inhomogeneities in the

mantle conductivity are probably more important and so one could conclude that there is not yet added realism

in simulations that include the galvanic contact. But note that while lateral inhomogeneties might lead to non-

systemmatic errors, the ommission of galvanic currents is systemmatically to reduce the total energy of electric

currents in the surface layer. From this latter point, it might be argued that higher realism is indeed included

with models that include galvanic currents, even when these models do not include the lateral inhomogeneities

in the mantle.
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The last estimate may be misleading because mantle conductivity is expected to increase with depth and use

of the upper-mantle value may be inappropriate when also considering low n (global spatial scales) where electric

currents may travel deep into the mantle. The result is that the last estimate may underestimate the reduction

factor. Let us then consider a different simple model of mantle conductivity that is likely to over-estimate the

reduction factor. The second model is identical to the first except that below a depth dm = 5×105 (m) we assume

the conductivity is infinite and therefore φ vanishes. Given the relatively thin layer of mantle that remains, we

also simplify by assuming that electric currents in the mantle flow only radially following the electric potential

drop between φm = φ at the surface and φm = 0 at r = dm. We then have jr(r = a − h0) = −σmφm/dm
and following an approach similar to the last case, we find a galvanic reduction factor of

(
1 + (a−h0)

2

n(n+1)
σm

dΣ

)−1

which we plot in Fig 7 B. In contrast to the last case, this estimate suggests (assuming again σm = 10−3 S/m)

important galvanic currents for degrees 6 and below. Both cases show that increasing σm quickly increases the

importance of the galvanic currents and so both estimates are sensitive to the assumptions of upper mantle

conductivity.

6 Application to oceans on icy satellites

6.1 Introduction

There is growing evidence that many bodies in the Solar System may have global oceans under a shell of ice

(see Nimmo and Pappalardo (2016) for a recent review, and Tyler (2014) for a description of potential scenarios

allowing vigorous tidal flow.) In no case so far, however, have the dynamical state or electrical parameters been

well constrained from observations or theory. One might then expect to complete this section with simply the

statement that the mathematical formulations and methods described may apply to these bodies as well but

few details can yet be extended. There are, however, a few common elements in these oceans that motivate a

specialized discussion:

1. A reasonable provisional assumption is that these oceans are global and typically thicker than Earth’s ocean.

2. It may typically be the case that the ocean is exposed to rock and electrical conductivity is elevated due to

dissolved salts.

3. The most initially-plausible large-scale flow that can be discussed is tidal flow.

4. All the satellites with suspected oceans rotate synchronously with their orbit.

5. The oceans are covered with ice shells.

Because of items 1.) and 2.), we may anticipate that the conductance of the surface shell comprising the ocean is

typically higher than that for Earth. Conductance depends on the integral over the shell thickness, and so from

this consideration conductance increases for thicker oceans. But it also depends on conductivity which, it may be

argued, does not have as large a potential range as one might naively assume. Distilled water has a conductivity of

order 10−4 S/m, which is several orders of magnitude lower than Earth’s ocean (which has an average conductivity

of 3.2 S/m (Tyler et al., 2016)). Freshwater streams have conductivities about two orders of magnitude higher

than distilled water, indicating that contact with rock and other impurities quickly generates conductive charge

carriers. The satellite oceans that have contact with a rocky seafloor then likely have conductivies much higher

than that of distilled water. (One should note that in the deepest oceans on the largest satellites, pressure may be

great enough to form dense phases of ice that would sink and form the seafloor. While there could still be contact

of water and rock through subfloor hydrothermal circulation (Vance et al., 2007) this is not as assured as the case

with rock seafloor.) There are also limitations on the maximum conductivities that can be obtained because the

amount of salt that water can hold reaches a saturation value. Indeed, one might expect that because there has

been much time to reach an equlibrium that the salinity is near the saturation value. (The situation on Earth

is different as there are hydrological processes (rain, runoff) that add salt and geological processes (subduction,

evaporites) that remove it such that salinity varies regionally and does not typically reach a saturation value.)

Estimates of the conductivity at saturation level have been made (Hand and Chyba, 2007) and, while uncertain
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because they depend on the composition of the salts involved and local conditions, we see a range much closer to

the value of Earth’s ocean than what one might initially expect given the large potential range of the conductivity

of water. Perhaps a summary anticipation is that conductivity in these oceans is comparable to or higher than

Earth’s ocean because the satellite oceans have had more time to saturate (while the temperature of the water

may be similar to that in ice-covered oceans on Earth.)

With higher conductance, the assumption of electrical thinness of the ocean as required in the thin shell

formulation is harder to meet. Also, if the oceans are global, as in 1.) or if at least we yet know no better, then

one need not include the complications of the inhomogeneous conductance in the formulations we have discussed.

These considerations indicate that the thin-shell formulation discussed may not be the most appropriate for

these extraterrestrial cases. Indeed, without the inhomogeneities in the conductance, simpler formulations having

spherical harmonics as eigenfunctions are available, as shown in the analytical solutions in Sections 3 as well as

the discussion of electrical currents in the mantle (in which radial symmetry of conductivity was always assumed).

Because of items 3.) and 4.), the most important motional induction studies for all satellites involve flow that

has force components that are identical (to within scaling factors) if not necessarily similar responses. Properly

non-dimensionalized, the available tidal forces are few and the same for all satellites. The frequency of the tidal

forcing and therefore tidal flow is also commensurate with the rotation rates such that these frequencies, when

nondimensionalized by the rotation rate, are also the same for all satellites. For similar reasons, one can be

assured that any resulting tidal flow will show rotation and inertial acceleration as equivalent in dynamical

importance. From these considerations, the flow on the satellites fall into a subclass of the much larger range

of potential scenarios. But while the tidal force constituents are similar for all of the satellite oceans, the ocean

tidal response depends on the ocean parameters and need not be commenurate with the forces. Seemingly small

differences in ocean parameters can change the eigenmodes of the ocean such that the ocean tidal response may

even be dominated by a subtidal constituent that happens to excite the ocean with a spatial/temporal pattern

corresponding to one of the ocean’s eigenmodes. As an example, even if the predominant tidal forces on Europa

are due to eccentricty, the predominant ocean tidal response may be a resonant response to one of the sub-

dominant tidal force constituents due to obliquity (Tyler, 2008). As a related example of resonant tides, consider

that the equilibrium ocean tidal height for Earth’s ocean is only of order 0.1 m; regions we refer to as having

large tides are a result of regional ocean parameters leading to a resonant response, rather than differences in the

force constituents. In brief, the predominant flow in all of the satellite oceans may be the response to similar tidal

forces but the range of responses depends sensitively on the ocean parameters and is not simply commensurate

with or predicted by the amplitudes of the force constituents for the specific case.

Because of item 5.) we should expect that there is little potential for directly measuring the flow velocity and

so the formulations of the induction equation with velocity removed (see Section 2.3.4) may be highly relevant.

6.2 Are oceans electrically thin?

The oceans can be considered to be electrically thin if the ratio of the geometric depth (h) to the frequency-

dependent electromagnetic skin depth (2K/ω) is much less than unity. This condition can be expressed as a

critical period τc = πµ0hΣ. When the dynamical period considered is much larger than τc, then the ocean is

electrically thin. The periods we must consider for motional induction are those of the tides (which is the period

of rotation/orbit in these cases of tides on satellites in synchronous rotation). The periods for induction are less

well constrained. The dominant induction signal on Europa comes from the time variations in Jupiter’s magnetic

field as it spins relative to the orbiting satellite. The period of this dominant signal is about 11 hours, while the

spectrum of sub-dominant induction sources includes the 85.2 hour orbit and longer periods. The orbital periods

of the other satellites with suspected oceans range from about 1 to 15 days. The geometric thickness of these

oceans may reach hundreds of kilometers.

Considering a range of 0 to 100 (S/m) for the depth-averaged conductivity, the expected range for the critical

period of these satellite oceans is shown in Figure 8. For comparison, the ocean geometric thickness for Europa
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Fig. 9 Within the model assumed, the response of Europa’s ocean to a fluctuating external magnetic field depends only
on two ocean parameters—it’s relative geometric thickness αg , and it’s relative electrical thickness αe. The two sets of
solid curves describe this response; those labeled with negative numbers describe the temporal phase lag (degrees), and
the other set describes the relative amplitude. The amplitude inferred from Galileo magnetometers is 0.97, and so it is this
curve in the diagram that determines which αe, αg pairs are allowed. Physical parameters can be plotted using these same
coordinates (αe, αg), and we can see that the cited ocean conductance value of 5× 104 S (dashed curve) indeed aligns with
the 0.97 curve, but only below the range 0.04 < αg < 0.11 allowed by gravity constraints. The line (dotted-dashed curve)
describing an ocean conductivity of 10 S/m, however, agrees very well with the 0.97 curve in the realistic αg region. Such
high conductivity indicates extreme salinity near its saturation value; by weight, Europa’s ocean would be about one third
salt.
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Fig. 10 As in Figure 1 but expanding low αe region.

has been constrained to fall between the horizontal dashed lines (Anderson et al., 1998). One sees that when

considering tidal periods, configurations allowing an electrically thin ocean assumption are reduced to a small

subset of parameter coordinates with conductivity much less than 10 S/m. When considering the dominant

induction period of 11.1 hours, it seems very likely that Europa’s ocean should be regarded as electrically thick.

Indeed, this is strongly supported by the magnetic response of Europa as observed by the Galileo spacecraft, as

described next.

6.3 Induction

In the vicinity of Europa, magnetometers aboard Galileo reported anomalous magnetic fields that are now thought

to be the response of a global ocean to the temporally-varying component of Jupiter’s magnetic field as it rotates
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once every 11.1 hours (Khurana et al., 1999; Kivelson et al., 2000). Recent attempts to refine the analyses and

determine specific properties of the ocean from these magnetic measurements has produced differing results. The

electrical conductivity of the ocean is an especially important parameter to determine because this describes the

ocean salinity (salt content) which has a major role not only in biological and chemical processes, but also in the

dynamics and thermodynamics of the ocean. And yet the two most recent and thorough analyses have produced

constraints on the minimum conductivity that differ by two orders of magnitude. A constraint for the minimum

conductance (integral of conductivity over ocean depth) implicitly gives an average ocean conductivity of the order

of 10−1 S/m (Schilling et al., 2007), while other work (Hand and Chyba, 2007) claims that the conductivity must

be of order 101 S/m. Reformulating the magnetic response function using dimensionless variables that deconvolve

the parameter dependencies, and replacing the basis functions of the formulation such that numerically stable

solutions can be plotted throughout the parameter range of interest, we show that the higher conductivity value

is the appropriate constraint, while the lower value would be appropriate only in a region of parameter space

already excluded by gravity constraints (Anderson et al., 1998). If we admit this higher conductivity estimate, a

very important conclusion is that Europa’s ocean is very nearly saturated with salt as has been claimed (Hand

and Chyba, 2007). A limiting factor in using this result scientifically, however, is that presently there are not

suitable estimates for the uncertainties involved in this estimate. The high conductivity result is based on an

estimate of the magnetic response of Europa’s ocean (Schilling et al., 2007), but only the amplitude and not the

phase of the response was estimated from Galileo data. The amplitude A was estimated as A = 0.97± 0.02, but

the small uncertainty describes only an agreement with the methodology and model assumed (other models might

also fit the data) and it is unclear how well this represents the full uncertainty in Europa’s observed magnetic

response.

Identification of the most appropriate ocean parameter constraints that can be obtained from the magnetic

data and which optimally exploit the data depends much on the formulation chosen for the magnetic response

function, which gives the amplitude and phase of the ocean’s magnetic response in terms of a selection of pa-

rameters. Here we formulate this function in terms of only two physically-based dimensionless parameters: The

relative electrical thickness αe is the ratio of the ocean thickness to that of the frequency-dependent “skin depth”,

it describes the penetration and electrical resistance in the ocean medium; The relative geometric thickness αg is

the ratio of the ocean depth to the length scale for horizontal variation, it controls the geometric attenuation of

the magnetic fields away from their electric-current sources. Within the idealizations for the ocean electrodynamic

model that have been assumed in the previous work and are continued here, the response of a planetary ocean

to a fluctuating external magnetic field depends only on these two free parameters, and so any ocean parameters

obtainable from the magnetic data must be derived through ratios of these and known parameters. This consid-

eration forms the base of the analysis here and has lead us to determine that conductivity (and not conductance)

is the parameter that can be appropriately constrained in this application of Galileo magnetic data, and that the

constrained value (if we ignore consideration of errors) is about 10 S/m. These results are summarized in Figures

9 and 10. We shall describe how we obtain these results after first describing the previous approaches:

The magnetic response function assumed in (Schilling et al., 2004; Hand and Chyba, 2007), and essentially

consistent with (Schilling et al., 2007), is

Aeiφ =

(
r0
rm

)3 RJ5/2(r0k)− J−5/2 (r0k)

RJ1/2(r0k)− J−1/2 (r0k)
(6.1)

where A provides the amplitude of the ocean response (fraction of the imposed jovian magnetic field that is

cancelled by the magnetic field due to the electric currents responding in the ocean), φ defines the phase lag of

the response, Jn is the Bessel function of the first kind,

R =
r1kJ−5/2 (r1k)

3J3/2 (r1k)− r1kJ1/2 (r1k)
, (6.2)
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r1 is the radius to the seafloor, r0 is the radius to the sea surface, rm is the radius to the icy surface of the

moon, and k = (−iω/K)1/2 (where ω is the frequency of the external magnetic field, and the magnetic diffusion

coefficient K is a constant inversely proportional to the electrical conductivity).

Despite the spherical geometry of this problem, Bessel (or spherical Bessel) functions are not the best radial

basis functions for describing the response of a thin conducting shell surrounded by relative insulators because

the response gains physical similarities to that in planar geometry. From the practical point, (6.1) cannot be used

to calculate the response over the full range of parameter values of interest because it is numerically unstable;

in this form, very similar numbers are subtracted from one another leaving few or no digits to describe the

result. An approximate form (Hand and Chyba, 2007) allows stability over part of the parameter range (for the

amplitude though not for the phase), and a switch to modified Bessel functions seems to also help the stability.

But by recognizing that the electric currents flow in a very thin shell, rather than through a spherical volume,

we find a switch to simple and stable trigonometric basis functions once we change to new variables: Here we

define αg = hκ (where h is the liquid ocean thickness/depth, and the wavenumber κ = n/r0 with the spherical-

harmonic degree n = 1 for this application), and αe = h/δ (where δ = (2K/ω)1/2 is the electric skin depth).

We can then write (6.1) as

Aeiφ = −
(
r0
rm

)3
N

D
(6.3)

where

N = 3 (−1 + i)αeα
2
g

(
2α2

e (−1 + αg) + 3iα2
g

)
cos ((1 + i)αe) (6.4)

+ −4α4
e (−1 + αg)2 + 9α4

g − 6iα2
eα

2
g

(
−1 + αg + α2

g

)
sin ((1 + i)αe) ,

D = 2α2
e

(
3 (1− i)αe (−1 + αg)αg cos ((1 + i)αe) +

(
2α2

e (−1 + αg)2 + 3iα2
g

)
sin ((1 + i)αe)

)
.

Note that N/D depends only on two parameters—αe and αg. The term (r0/rm)3 is not really associated

with the ocean’s response but rather it’s location which is not precisely known for Europa because of the surface

layer of ice. This is why the observed response amplitude 0.97 is considered to be only a lower-value constraint;

the observations allow just as well for an ocean response near 1.0 but separated from the surface by an ice layer

16 km thick (Hand and Chyba, 2007). Gravity data constrain the total of ice plus liquid water thickness to fall

in the range 80 km – 170 km (Anderson et al., 1998). Adding this consideration, we find the constraint for the

realistic range of αg described in the caption of Figure 9. (The latter constraint can also be used to convert the

attenuation factor (r0/rm)3 in (6.3) into a function of αg such that the full response, including uncertain ice

thickness, is described in αg, αe coordinates.)

A version of Figure 9 showing the low αe region is shown in Figure 10. This is the diffusive regime that a

lower-frequency external source will encounter, and in this case conductance rather than conductivity becomes

the better constrained variable. But in the case considered here and highlighted in Figure 9, the ocean’s electrical

resistance is of less importance than the geometric attenuation effects; in this part of the parameter space, the

response amplitude (at the satellite surface) is primarily sensitive to the distance to the electric currents which

are separated by a layer of ice and center at an effective depth controlled by conductivity. Interestingly, in this

part of the parameter space the primary importance of the ocean’s conductivity is it’s control over the geometry

of the electric currents rather than their strength.

If both the amplitude and phase of the magnetic response were known without uncertainty then we would

just need to look for the intersection of the correct amplitude and phase in Figure 1, and from this location obtain

the parameters αe, αg, which are the complete set of ocean parameters that can be determined from perfect

magnetic data and within the idealized model assumed. If both the amplitude and phase are known, but each

with a specified uncertainty, then a parameter-space patch of possible αe, αg are extracted. But as can be seen in

Figure 1 the extension of this patch depends much on the location in the parameter space. The optimal position
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in the parameter space corresponds to αe ≈ 1 where the amplitude and phase lines are most perpendicular.

In this region, uncertain amplitude and phase retain the most unique information. In other regions where the

amplitude and phase lines are nearly parallel, the two pieces of information about the ocean can be redundant for

practical purposes. The region αe ≈ 1 describes an ocean with a frequency-dependent electrical depth similar to

its physical depth. This is probably not the case for the application we have been considering (an unrealistically

thin ocean would be required) but can be designed in a similar analysis using an imposed magnetic field of

lower frequency. We do not presently have an estimate for the phase, and the preliminary indication is that with

uncertainties the phase information will be largely redundant with the amplitude information. This is because

we expect the correct αe, αg pair lies in the upper right of Figure 1 where phase and amplitude lines run nearly

parallel. Even in this case, the phase information could be usefully applied for confirmation of the information

contained by the amplitude, and as a consistency check of the uncertainty calculated. If the amplitude is 0.97,

then the phase should be about 1.9 degrees. Confirming this, even if the uncertainties are relatively large, can

be used to exclude the low αg region (involving phase several times greater than 1.9 degrees) which we presently

exclude using only the gravity constraint.

At present, we have available only the amplitude estimate and are unsure how to interpret the uncertainties

that have been given. In the expected region, the amplitude 0.97 alone can be translated into an estimate of

ocean conductivity of 10 S/m because the 0.97 amplitude contour and the 10 S/m conductivity contour are very

nearly parallel. The lower value given by the uncertainty is 0.95 and this corresponds to a conductivity of 3.5

S/m. The upper value of 0.99 is not likely the true ocean response because this would fall in the low αg region

forbidden by the gravity data, and this upper value is probably only useful in confirming that there is a layer

of ice of maximum thickness 16 km thick (as in Hand and Chyba (2007)) on top of the ocean. An independent

estimate for the upper bound on conductivity can be obtained by considering salinity saturation conditions, and

the value of 10 S/m appears to be near saturation Hand and Chyba (2007).

An important point that can be seen in Figure 9 is that small uncertainties in the amplitude can lead to much

larger uncertainties in the ocean parameter estimated. In the example in the last paragraph, a 2 percent change in

the response-amplitude estimate leads to a 300 percent change in the estimate of conductivity. Hence, improve-

ments in the magnetic response estimate can lead to disproportionate improvements in the ocean parameters

estimated. But there are limitation that must be considered. The reason why the 0.97 amplitude contour and the

10 S/m contour align in the region of interest is that the 11.1-hour excitation frequency used in this application is

too high to have penetrated all but the surface of the ocean; there can be little information in the magnetic data

about the total conductance (depth integrated conductivity) or ocean depth. This can be alleviated by using a

lower source frequency, and Khurana et al. (2002) have proposed sounding Europa’s seafloor with an 85.2-hour

orbital-period magnetic source. This can provide information about the ocean depth provided the conductivity

is not substantially higher than the guess of 2.75 S/m (similar to Earth’s ocean) that they assume, or if the

amplitude and phase of the response are both known accurately (as might be obtained from a magnetometer in

orbit).

In the best circumstances, melding of a simple spherically symmetric, uniform-conductivity ocean electrody-

namical model with remotely-sensed magnetic-field observations can be used to translate two observed quantities

(the amplitude and phase of the magnetic response) into two ocean parameters (ocean depth and average elec-

trical conductivity). No further information is possible within the simple dynamics allowed by the model. But in

practice one or both of these parameters may be unattainable because of observational errors—the two observed

quantities may contain the same information, at least in any retrievable sense.

Other studies of induction in satellite oceans have been described for Ganymede (Kivelson et al., 2002), and

a third example (though for a magma ocean) has been described for Io (Khurana et al., 2011).



Near-surface electrodynamics 47

6.4 Motional induction

The gravitational potential of the primary on a satellite involves a time-dependent, spatially-differential com-

ponent. Combined with a hydrostatic approximation, this potential is often expressed as the equilibrium tide

displacement ηF , the horizontal gradients of which lead to the tidal forces. For all synchronously rotating satel-

lites, the temporal variation in ηF is due to the satellite’s obliquity (the angle of tilt of the satellite’s rotation

axis with respect to its the normal vector of its orbital plane) and orbital eccentricity. Where obliquity and

eccentricity are small parameters, a McLauren expansion is performed on the gravitational potential to isolate

the leading-order terms comprising ηF .

An important result is that to a very good approximation, ηF on the satellite involves only spherical-harmonic

degree 2 (the order/rank may be 0, 1, 2). This suggests that the tidal flow on the satellite will be of very large

scale such that the condition for geometric thinness of the ocean shell is met provided the ocean thickness h is

much less than the satellite’s radius. While this is likely to be reasonable, it should be recognized that it is not,

however, assured because of spectral transfer of energy. The governing equations for the dynamics of the fluid

tides must include the Coriolis term (because the synchronous orbit requires that the frequency of the tidal force

be commensurate with the rotation frequency, as mentioned above). The Coriolis term introduces a dynamical

asymmetry in the governing equations such that spherical-harmonic base functions are not eigenfunctions of

these equations even at some level of idealization or approximation, as could be the case without the Coriolis

term. The physical manifestation of this asymmetry is that momentum propagating in the prograde direction is

focused toward the equator while the opposite happens for propagation in the retrograde sense. Mathematically,

if spherical harmonics were eigenfunctions of these equations, then tidal forcing at degree two will give an ocean

response only at the same degree. With the Coriolis term included, the ocean’s response need not be even primarily

at the same degree as the forcing and in general will involve a sum of spectral components. Hence, a small ratio

of ocean thickness to satellite radius may reasonably suggest that the ocean may be regarded as geometrically

thin but this should be checked when specific ocean tidal responses are considered.

While geometric thinness seems likely for the satellite oceans, they may be (even typically) electrically thick

when considering tidal periods. As described in the last section, there is evidence that this is the case for Europa.

It may also be the case for most of the satellites. When the ocean is electrically thick, induction from external

magnetic fields does not penetrate very far into the ocean. Motional induction involves sources within the ocean

and so motionally induced fields may penetrate even below the ocean. For electrically thin oceans, the thin-

shell formulation cannot be applied except in the case where magnetic diffusion is assumed weak and ignored

altogether, in which case the thin-shell formulation reduces to

∂tBr = −∇H · (BruH) . (6.5)

In this case no depth-averages are implied and so this equation can better be regarded as simply a projection of

the induction equation onto a spherical surface.

It may remain unfeasible to directly measure the flow velocity in the satellites and so it is insightful to remove

the flow velocity from (6.5) as described in Section 2.3.4. Using (2.61), while assuming Σ = Σoc, to obtain

∂tBr = −∇H ·
(
BrL−1

u

[
−g∇H (η − ηF ) +

τ

ρh

])
. (6.6)

While Earth’s ocean has momentum fluxes into the ocean from wind stress and other external forces, this is not

as clearly the case for the satellite oceans and so there are not obvious examples of other force agents contributing

to τ . In this case we can consider

∂tBr = −∇H ·
(
BrL−1

u [−g∇H (η − ηF )]
)
. (6.7)

This equation relates the dynamical parameters Br and η, which are both remotely observable. The other

parameters may typically be known, though we may point out exceptions: 1) The tidal equilibrium height is
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readily calculated from astronomical and other known parameters except that the very small obliquities of the

satellite are not usually known from observations (minimum, forced-component values may be inferred from

dynamical expectations (e.g. a Cassini state)); 2) The dissipation parameter/operator α contained in L−1
u is

poorly constrained outside of limiting cases such as boundary layer dissipation where it might be calculated from

first principles. In the case of Europa, the dissipation rate is likely to be small and so the latter is not crucial.

But on other satellites with very thick ice cover, damping/dissipation rates may be large and knowing α more

critical in calculations involving (6.7).

7 Conclusions

This study has presented specialized mathematical formulations appropriate for calculations of electrodynamics

near the conductive surface shell of Earth and planetary bodies. It is assumed that the shell may be comprised of

fluid in relative motion, and that formulations may gain higher dynamical consistency and accuracy by incorpo-

rating conservation principles and/or governing equations for the fluid dynamics. While more general formulations

are indeed available, thin-shell formulations exploiting the complete or approximate galvanic isolation of the shell

show important advantages as well as restrictions.

The primary advantage is that the thin-shell formulation can be solved numerically with a small fraction

of the computational resources needed in more general formulations. The numerical model described in this

study is a hybrid approach where the shell is represented with finite differences/volumes and the regions outside

of the shell are represented with spherical-harmonic basis functions. The system of coefficients is solved using

Krylov subspace methods with a preconditioner matrix obtained from the first iteration of a fixed-point method.

The finite difference/volume bases have the advantage of maintaining full dynamical consistency with the ocean

models from which parameters are adopted (i.e. we may use the natural grid from the ocean model). The spherical-

harmonic bases have the advantage of automatically including the far-field boundary conditions (i.e. the solution

domain is effectively reduced). Using this method, high-resolution (e.g. 1/6 by 1/6 degree) global solutions may

be obtained very quickly (e.g. on the order of minutes using a standard desktop computer). It is demonstrated

that solutions to the equations prescribed are also very accurate. Validation against analytical solutions shows

very small errors falling within the theoretical limits of accuracy allowed for a chosen resolution.

The primary disadvantage is that the thin-shell formulation lacks galvanic coupling with conductors outside

of the shell. Adjacent thin conducting layers (e.g. due to sediments) can be included by simply extending the

shell thickness to accomodate these regions. The neglect of galvanic coupling becomes valid in the limit that the

thin shell has electrically insulating regions (even if arbitrarily thin) on both sides. While this is approxiately true

for Earth, the low conductivity of the upper mantle can still be galvanically important for the very largest scales

(e.g. below spherical-harmonic degree 6) because of the larger cross sectional areas presented for conduction.

A method for estimating the error due to the missing galvanic currents is also shown. The thin-shell approach

provides then solutions in the limit of no galvanic coupling. Because the galvanic coupling depends on the realism

in representing the conductivity in these other conductors (e.g. the upper mantle), the disadvantage described

here can become moot in applications where this conductivity is not well known.

Higher realism is not brought by three-dimensional models until the description of the (e.g. upper mantle)

conductivity in the galvanically connected region is prescribed accurately. It is arguably the case that such accu-

racy is not yet available for the Earth’s inhomogeneous upper mantle. But it can be important in inverse studies

that the three-dimensional models have this representation such that appropriate parameters can be fit using

observed data. On the other hand, if three-dimensional models cannot include the high spatial resolution needed

to represent the inhomogeneities in the shell, then realism added by galvanic coupling may be overwhelmed by

errors due to incomplete spatial resolution. (It is clear from the induction equation with inhomogenous parameters

that there is field energy transfer between spatial scales; the reliability of even large-scale features may therefore

require high-resolution calculations.)
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For applications involving motional induction by dynamical flow, the thin-shell described allows adoption of

the native grid on which the dynamical flow calculations were made. This avoids interpolation errors which in

some applications could lead to leading order errors. The reason why the errors can reach leading order is because

the radial component of the induction equation involves flow-dependent sources that can, for many applications,

vanish to leading order. (One can loosely argue that the poloidal component of the ocean flow generated magnetic

field is essentially a second-order effect with typical amplitudes an order of magnitude less than that of the toroidal

fields.) Errors due to interpolation of ocean parameters can then have a non-comensurate effect on the remaining

higher-degree terms. There are, of course, various other advantages of having the electrodynamics calculated on

the same grid as that of the oceanographic variables (one should more carefully say the grids are “aligned” when

the thin-shell covers a larger domain including land.)

When considering extraterrestrial applications, it may be the case that neither the full induction equation nor

thin-shell version are the best formulation with which to start. The reason is that in extraterrestrial cases where

the conductivity distribution is highly uncertain, radial conductivity distributions may typically be a reasonable

starting assumption. In this case, there is a more immediate uncoupling of the radial vector component of the

induction equation from which solutions can be obtained (as in Section 2.4.3). It may also be the case that the

oceans in these applications are not electrically thin, as required by the thin-shell formulation.

Some of the ancillary formulations described in this study may be important in both terrestrial and extrater-

restrial applications where some parameters (e.g. ocean flow velocity) may be unobservable directly. Forms of the

induction equation where these parameters are exchanged for other parameters (e.g. surface displacement) can be

a benefit. This study has also reviewed simpler formulations available in the diffusive quasi-static, and frozen-flux

limits. Any study should first consider whether one of these simpler formulations is appropriate. In thin shells,

the decay time scales and parameter ratios needed for such assessment can be quite different than those more

typically described for conducting media because the electromagnetic propagation is not predominantly through

the conductor but rather around it. This study provides a detailed description of how to make such assessment

in applications of both Earth and planetary oceans.
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A Electrodynamics in a rotating frame

This section reviews some of the basic steps in Tyler and Mysak (1995a) to obtain the equations governing electrodynamics in
a rotating frame. The Equivalence Principle from General Relativity states that non-inertial reference frames are equivalent
to inertial frames with gravitational fields present. The Covariance Principles for tranformations of the four-dimensional
electromagnetic tensors can then be used to transform the tensors to a rotating frame, given the appropriate metric.
Additionally one needs to transform the constitutive relationships and this was done assuming the Co-Moving Hypothesis.
The most general results of the transformed equations are described in Tyler and Mysak (1995a). These were greatly
simplified when it is was assumed that the velocities involved were non-relativistic, and the following set of equations
comparable to a Maxwell-Minkowski formulation were shown:

∇× e = −∂tb (A.1)

∇ · b = 0 (A.2)

∇ ·
(
εe− εN−2ũ× b

)
= ρe (A.3)

∇×
(
µ−1b− εN−2ũ× e

)
= ∂t

(
εe− εN−2ũ× b

)
+ j (A.4)

together with

j = ρeuc + σ (e + uc × b) (A.5)

which is similar to the usual form of Ohm’s Law for a moving conductor (governing conduction electric currents) but
with advection currents (i.e. electric currents due to flow advection of spatial charge density) added. Here, ε = εrε0 is
the absolute electrical permittivity (εr is the relative permittivity, ε0 is the permittivity of free space), µ = µrµ0 is the
magnetic permeability (µr is the relative permeability, µ0 is the permeability of free space), N = (µrεr)1/2 is the index of
refraction, and

ũ = us + (1−N2)uc (A.6)

is a velocity involving the solid-body rotation us of the coordinate system and the relative velocity uc of material (e.g. the
fluid ocean) in that coordinate system. Here the notation in Tyler and Mysak (1995a) is preserved, where lower case e and
b are used to refer to the fields observed in the rotating frame (this should not be confused with the use of b in the main
text to refer to the ocean-generated component of the magnetic field.)

Because these equations include a dependence on the inhomogeneous velocity of the reference frame, it is immediately
clear that the equations governing the electrodynamics are not invariant to a transformation to a rotating/accelerating
frame. To state that “Maxwell’s equations” are similarly not invariant, even when non-relativistic approximations have been
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applied, is similarly true, although with some caveats because the specific form of the Maxwell equations presented can
vary as they usually incorporate constitutive relationships (which have quite different transformation properties than the
electromagnetic fields). Basically, outside of the special case of homogeneous (i.e. no material charge or electric currents)
Maxwell-Minkowski equations—which are indeed invariant in the transformation—the electromagnic field components
represent macro-scale averages over micro-scale processes in the media and the transformation of these fields gains properties
of the tranformation of the constitutive relationships.

Importantly, additional approximations (beyond simply an assumption of non-relativistic speeds, i.e. ũ · ũ/c2 << 1)
were used in Tyler and Mysak (1995a) to show that (A.1, A.2, A.4, A.5) can be reduced to their non-rotating forms.
These approximations involve assumptions about the electrical properties of the material as well as an assumption that
the relative amplitude of the magnetic field in the process considered (with respect to the amplitude of background fields)
must be larger than the squared relative speeds ũ · ũ/c2.

As (A.1, A.2, A.4, A.5) are the equations needed in forming the induction equation, the induction equation is ap-
proximately invariant to rotation. The remaining equation retains what was termed a “generalized Schiff’s charge density”
Tyler and Mysak (1995a). In adopting the usual induction equation for applications in the rotating frame, one assumes
that displacement (first term on right side of A.4) and advection electric currents (first term on right of A.5), even in their
modified form, can be ignored relative to conduction currents.

B Gauge potentials

The gauge potentials, usually written as A, φ comprise the magnetic vector potential A and the electric scalar potential φ.
These are sometimes treated together as the electromagnetic four-vector. These variables are arguably more fundamental
than the usual variables E, B. General solutions can be obtained from formulations involving either, although one may
note that outside of relativistic calculations (where the Lorentz gauge must be adopted for dynamic consistency) the choice
of A, φ is not unique as there is freedom in choosing the gauge. The relationships between A, φ, and E, B can be found in
Tyler et al. (2004), which uses a gauge formulation exploiting the gauge freedom for calculations of ocean electrodynamics.
The formulation in Tyler et al. (2004) is more general than provided in the induction equation (e.g. displacement currents
are allowed) but the relationships described can also be used to calculate A, φ from E, B (and vice versa) for the restricted
applications consistent with the induction equation.

C Galvanic vs. inductive current sources

It is helpful to provide some description on the nature of electric currents and sources ultimately driving the electrodynamics.
Specifically, we shall provide a description of the distinctions between galvanic, induced, and motionally-induced electric
currents.

First note an important distinction between field variables such as the electric and magnetic fields (E, B) that can
exist in a vacuum region, and material properties and variables that can only be defined within material media. Indeed,
the homogeneous Maxwell equations obtained by setting the material charge density ρe, and electric current density J to
zero still support electromagnetic waves. While this is true even in regions where no material is present, it is expected
that these vacuum electromagnetic fields must ultimately be driven by material sources either outside of the domain (such
that the fields are driven by prescribed boundary conditions) or previously present within the domain. The Maxwell’s
equations can then be described as involving the field variables E, B and the intensive material properties/variables ρe, J,
σ, u. The electric charge density ρe evidently describes an excess over neutrality of material electric charge (as averaged
over the very small scales where the assumptions of continuum electrodynamics breaks down). As we are only considering
conduction electric currents, J is due to material electric charges moving through the medium and we do not include in
J displacement electric currents or the advection electric currents due to the transport of ρe with the material flow. An
implicit assumption is then that |ρeu| << |J|, and more generally that conduction electric currents either dominate all
other electric currents or are at least isolated for study. The material velocity u shall also be regarded here as an intensive
material variable as it is the ratio of the momentum density and mass density (both intensive material properties). The
electrical conductivity is an intensive material property describing the ratio of electric current density to the in situ electric
field. These “intensive” properties are distinguished from “extensive” properties that depend on the “extent” or amount of
material present. As examples, electric charge or electric current are extensive variables while their associated material
densities ρe J are intensive variables as described.

A second important distinction is in the nature of sources generating the electric field. In a wide range of applications,
the electric field is often a field effect of two quite distinct physical processes in the material media. This can be made most
clear with the gauge-potential variables A, φ as they are more fundamental than E, B (see Appendix B). Specifically, the
two sets of field variables are related as

E = −∂tA−∇φ, (C.1)

B = ∇×A (C.2)
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from which we see now that E has two components:

The second component (−∇φ) involves the gradient of the scalar electric potential. This simply describes an electro-
motive force on a charge down the gradient of φ. A resulting electric current can be referred to as a “direct” or “galvanic”
current. “Galvanic current” is probably the better choice for distinguishing the physical process as “direct current” or “DC”
is often used to distinguish temporally stationary currents from alternating currents (“AC”). While “direct currents” may
typically be driven by the gradient of electric potential, this physical distinction does not appear to be a requirement in
the use of the term and so in this paper “galvanic currents” is exclusively used to refer to electric currents driven in this
way. Similarly, in many related studies the use of the term “toroidal currents” is used to refer to the galvanic currents but
this is also avoided here as the toroidal/poloidal decomposition does not exclusively distinguish the galvanic processes.

The first component (−∂tA) describes the “inductive” component of the electric field and is perhaps less intuitive.
Toward helping to describe it, note that from Maxwell’s equations together with (C.1, C.2) and the Coulomb gauge
∇ ·A = 0, we may write write

∇2φ = −ρe/ε0 (C.3)

∇2A = −µoJ (C.4)

from which we may regard φ as the field quantity associated with ρe, and A as the field quantity associated with J. (In a
more general treatment that allows freely propagating electromagnetic waves and consistency with relativity, the Laplacian
operators above are replaced with D’Alembertian wave operators.) While φ is the Coulomb potential associated with ρe,
A is evidently dependent on the motion or time rate of change of this Coulomb “cloud” φ. In some simplistic cases, A can
be regarded as the advection of φ at the drift velocity of the conduction charge carriers.

While ρe is confined to the material (conductive) media, φ (and thereforeA) is not and may be felt in a second conductor
separated from the first by an electrical insulator. In many applications, one may think of the inductive component (−∂tA)
of E as creating the tendency of accelerating charge to entrain the motion of other charges that may even be galvanically
isolated in a second conductor. This mysterious “reach” between conductors is of course just a restatement of the mysterious
difference between field and material variables. While φ and therefore the galvanic component (−∇φ) of the electric field can
also reach through insulators and into a second conductor, the tendency to create electric current in the second conductor
is quickly cancelled by a spatial charge density redistribution. The electric currents responsible for this redistribution of
spatial charge have a nature overlapping with other forms of displacement current that are ignored in this treatment where
only conduction currents are assumed to be significant.

D Depth integration

The utility of the thin-shell formulation is primarily restricted to cases where the shell is electromagnetically thin (i.e. the
frequency-dependent skin depth within the conducting shell must be much larger than the geometric thickness of the shell).
In the application to the oceans this criterion usually excludes high-frequency applications that are anyway inconsistent
with other assumptions. Where the thin shell extends onto land and conductivity drops, the criterion can be formally more
limiting, although one may note that a violation in this case is not likely to change the solution for the electric currents
(and therefore associated magnetic fields) as these remain primarily in the oceans. Because of the galvanic isolation and
electromagnetic thinness of the shell, the radial component of the magnetic field, and the horizontal components of the
electric field are to good approximation uniform with depth in the shell.

Now note that in the thin shell induction equation, repeated here generically as

g · ∂tB = ∇ · ({u×B} × g −K{∇ ×B} × g), (D.1)

and where we take g to be perpendicular to the shell and at least approximately uniform within the sheet (as would be
the case where g represents the radial unit vector), the vector inside the divergence operator represents EH × g and is
therefore also depth-uniform within the shell.

Although EH×g is depth uniform, the two terms comprising it are individually not, necessarily. The first term involves
B but this shall usually be replaced with a prescribed background field and so this whole term is prescribed. The second
term, however, involves the product of the parameter K and a function (curl) of the solution variable. Outside of idealized
cases, there will be an error if we assume that the depth average of this product will is equivalent to the product of the
depth averages. Basically, we do not in advance of the solution know how the two covary with depth. This can be avoided
by exploiting the depth-uniformity of EH . We note that because (K−1EH) = (K−1)EH , where the overbar represents the
depth average, we may write

ĒH =
(K−1EH)

(K−1)
=

(σEH)

(σ)
= B̄∗

H , (D.2)

where (2.25) has been used for the last equality, and use this instead in forming the depth average of EH ×g where needed
in the main text.
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E Toroidal component

The toroidal/poloidal decomposition is a mathematical decomposition in vector calculus that can be viewed as a re-
stricted form of the more general Helmholtz decomposition. For vectors with zero divergence (as for magnetic fields), the
toroidal/poloidal decomposition is often a convenient representation in spherical coordinates. A specific discussion of this
decomposition for ocean-domain applications is found in Chave (1983) and Sun and Egbert (2012).

In the thin-shell study described in the main text, the toroidal component is not resolved as fields are averaged over
the shell thickness. (The part that is resolved is the poloidal component). Within the assumptions that the ocean is both
electrically and geometrically thin, one can, however, estimate toroidal magnetic field components quite simply (e.g. Tyler
and Mysak 1995b; Tyler et al. 1997). Essentially, the assumption that the shell is both electrically and geometrically thin
allows one to assume quasi-stasis (i.e the electromagnetic adjustment radially through the shell is instantaneous), and
ignore horizontal derivatives relative to radial derivatives. The toroidal magnetic field b

(T )
H (h0 < r < a) is easily found by

integrating the equation
∂rb

(T )
H = −σµ0Br (uH − ū∗

H) (E.1)

from either one of the thin-shell interfaces where b
(T )
H = 0.

F Simplified formulations for idealized cases

F.1 Cases with spherical symmetry throughout all domains

When the magnetic diffusivity parameter is a function only of radius (i.e. K = K(r)) (2.12) can be written as

∂tBr +∇H · (BruH)−K∇2Br = ∇H · (urBH) . (F.1)

This equation can be interpreted as a dynamical equation for Br whereby Br changes with time due to advection and
convergences in the flow, diffusion, and tilting in which non-uniformities in radial flow ur redirect BH to gain a radial
component.

While (3.14) is a projection of the induction equation onto a spherical surface, radial derivatives are involved in the
Laplacian operator and there remains the coupling term on the right. There are, however, applications with configurations
or approximations such that (3.14) becomes an uncoupled scalar partial-differential equation that is separable. In this case,
the partial-differential equation can be replaced by algebraic equations and the solution of an ordinary-differential equation
for the radial dependence.

Recall that applications where one may assume radial symmetry in electrical conductivity throughout all domains
are not the target for the specialized methods described in this study. Indeed, one expects that a primary challenge that
must be addressed in these specialized methods is to allow for at least one electrically inhomogeneous layer. The thin-
shell formulation allows for this inhomogeneity while also imposing dynamical constraints and approximations. The radial
symmetry is, however, assumed in this and the next few sections simply for the purpose of seeking analytical solutions.

The following sections consider applications addressed using the thin-shell formulation. In this section we start, however,
by considering an application using (3.14) in which thin-shell assumptions have not yet been applied.

An important and common family of applications is one where a time-dependent external magnetic field is incident
on a stationary (or uniformly rotating) conductor and the electrical response must be calculated. Let us consider here the
conductor to be a sphere with K = K(r). Let us further assume that K(r) is described by j = 1...J concentric shells, each
with a value Kj that is uniform within the layer. Finally, let us assume a harmonic time dependency such that the symbol
∂t can be here regarded simply as a complex coefficient. In this case, (3.14) reduces to a Helmholtz equation(

∂t

Kj

)
B

(j)
r −∇2B

(j)
r = 0 (F.2)

applied within each layer j. These 1....J equations must be solved together with appropriate boundary conditions, as well
as matching conditions to ensure Br and ∂rBr are continuous across the interfaces between the layers.

The standard method for solving (F.2) is to first apply the method of separation of variables; a spherical-harmonic
expansion describes the horizontal dependence and the radial dependence is satisfied in general by the spherical Bessel

functions with argument kr, where k =
(
i∂t
Kj

)1/2
. In the case where a layer is an insulator (i.e. K → ∞) the spherical

Bessel functions reduce to simpler potential-field base functions. Because the number of layers J is arbitrary, one can
include as many layers as needed to model an arbitrary K(r). The method described then replaces the solution of the
partial differential equations with an algebraic system of equations for the 2J coefficients (two coefficients are needed for
the two base functions in each of the J shell domains.) These 2J equations are derived from 2 boundary equations and
2(J − 1) matching conditions across the J − 1 interfaces.
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F.2 Quasi-static formulations

The word electrodynamics is used in the title of this paper to emphasize target applications that extend beyond those that
can be treated under quasi-static assumptions. Courses in physics typically describe formulae and calculations for cases
of electrostatics (involving stationary electric charge) and magnetostatics (involving stationary electric current) before
delving into formulations for electrodynamics where these simplifying quasi-static assumptions no longer apply. Indeed,
the upward step in computational complexity is typically significant and so a first step in addressing an application should
be to determine whether the problem can reasonably be treated as quasi-static such that the simpler formulations may be
used. Even if the application to be considered is not expected to be quasi-static, the quasi-static solutions can be helpful
in validating and interpreting results from more complete and complex dynamical calculations.

The criterion for deciding whether the case is quasi-static is not as simple or immediate as some may think. Even the
formulation for the criterion is very much application dependent and what is clear from the outset is that in applications
of large-scale near-surface electrodynamics magnetic diffusion time scales sometimes quoted to gain this criteria are grossly
misleading. The source of confusion seems to be a lack of appreciation for the fact that electromagnetic adjustment in
the thin shell is quite different than what is usually described for conducting media. The reason for the difference is that
the adjustment fundamentally involves propagation through the surrounding insulators rather than directly through the
conducting media. Considering propagation away from a point source in the ocean at mid-depth, say, the direct path
through the conductor is only important for a horizontal range of about two ocean depths. Beyond that, the paths are
primarily up-over-down or down-over-up paths where the fields propagate through the ocean only up to the surface (or
down to the seafloor) where the fields then propagate horizontally through the surrounding poor conductors and then
refract back into the ocean. Strange “beach-mode” paths can even exist where fields propagate landward, curl around the
beach and then propagate seaward, combining the up-over-down and down-over up paths (Tyler et al., 1998). What is
clearly important here is that there are no applications involving primary direct paths through the conductor that do not
violate the thin-shell assumptions. The direct paths are important only for horizontal scales less than about two ocean
depths, as mentioned. Further, the assumption that the thin shell is electromagnetically thin means that the only time
scales considered are much larger than the time needed for the direct path to the interfaces of the thin shell. Therefore,
it is expected that there are no thin-shell applications for which the simple descriptions of magnetic diffusion time scales
(usually calculated with plane-wave assumptions) are appropriate.

The topic of estimating appropriate time scales for the electromagnetic adjustment (such as would be needed to
decide whether the application can be treated as quasi-static) is discussed in Sections 3.1 and 5.1. Here we describe useful
formulations that can be used if quasi-stasis applies.

A quick way of understanding the computational advantage of the quasi-static assumption comes from looking at the
gauge formulation (see Section cite). In the gauge formulation, one must generally solve four partial differential equations
(one for each of the components of the four-vector {A, φ} simultaneously. For sufficiently low-frequencies or long time
scales, however, the equation for φ uncouples from the others, allowing the equations to be solved sequentially rather than
simultaneously. The simplification in the quasi-static assumption can be traced to an electro-static assumption for the
behavior of the electric field. While the electric field E = −∂tA − ∇φ generally has two physically distinct components
(see Section C for description), in the quasi-static assumption E ≈ −∇φ and one can immediately take the divergence of
Ohm’s Law (2.5) together with (2.3) to obtain

∇ · (σ∇φ− σu×B) = 0, (F.3)

which is a simple elliptic equation for φ in three dimensions, assuming σ, u and B are prescribed. In many applications,
∇ · (σu×B) ≈ ∇ · (σu× F) , where F is the background main geomagnetic field. A solution strategy is then to first solve

∇ · (σ∇φ) = −∇ · J(p), (F.4)

for φ, where J(p) (in this case, J(p)= −σu × F) is an arbitrary prescribed component of the electric current density. The
total electric current density may be described as J = j+J(p), where j is the component of the electric current density that
must be resolved through solution. Once φ is found, the electric current and electric field can be calculated using (2.5), and
the magnetic field can be calculated using (2.3).

F.2.1 Quasi-static thin-shell formulations

Integration of (F.4) over the thin shell depth h0, gives

∇H · (Σ∇Hφ)− jr(r = a) + jr(r = a− h0) = −∇ ·
(∫ a

a−h0
J
(p)
H dr

)
− J(p)

r (r = a) + J
(p)
r (r = a− h0). (F.5)
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If we assume that the thin layer is surrounded by insulators, then both jr terms on the left side of (F.5) vanish as a
consequence of the fact that j must be continuous across the boundaries. One has then to solve a simple elliptic equation
in two dimensions given prescribed sources.

Alternatively, one need not assume the regions adjacent to the thin shell are insulators. One may couple (F.5) with an
equation (F.4) describing the exterior regions by requiring again continuity of the normal vector component of the electric
current. In this case, the thin shell does not remove the galvanic mode but may provide simplification when assumptions
about parameters or other choices are different in the two domains. For example, the intrinsically three-dimensional problem
of the oceans plus mantle can be reduced to solving a one-dimensional and a two-dimensional set of equations under the
simplifying assumption of a radially symmetric conductivity distribution (such as in Section 2.4.3). Let (F.5) represent the
inhomogeneous ocean/surface conductance shell. Following (F.4) with σ = σ(r), and J(p) = 0,

∇ · (σm∇φm) = σm∇2
Hφm +

1

r2
∂r
(
r2σm∂rφm

)
= 0, (F.6)

governs the electric potential in the mantle (φm).

F.2.2 Electric stream function, electric potential

The electric stream function is useful for assumed two-dimensional electric currents J (where J may represent either a two-
dimensional electric current in a three-dimensional medium, or a depth average over a thin layer). One must also assume
that the motional induction term is a vector also lying in the local plane of electric currents, or that adjacent insulators
confine the electric currents to remain in this plane. By application of Helmholtz’ theorem for an assumed two-dimensional
vector, we may expand J as J = ∇ΘJ + ∇ × (AJ n̂), where ΘJ is a scalar potential and AJ n̂ is the one component of
the vector potential (perpendicular to the plane of electric current) remaining after the two-dimensional assumption. We
have by (2.3), however, that ∇ · J = ∇2ΘJ = 0 such that we may (outside of unusual boundary conditions) assume simply
ΘJ = 0. The scalar AJ can then be regarded as a stream function for the electric current as J = ∇× (AJ n̂) = ∇AJ × n̂.
Using these relationships (together with E = −∇φ) in (2.5) we derive the following elliptic equation for the electric stream
function, where uH refers to the projection of the flow velocity tangent to the plane of electric current.

∇ ·
(
σ−1∇AJ + (n̂ ·B)uH

)
= 0. (F.7)

Interestingly, the electric stream function approach can be generalized to non-static cases. Indeed, in the thin-shell
formulation treated next, the magnetic potential at the surface of the thin shell is proportional to a stream function (call
it ψe) for the depth integrated electric currents within the shell as

ψe =
2

µ0
M. (F.8)

———————








