

PREPARING FOR VEG-04 AND VEG-05: IMPROVING PICK-AND-EAT FOOD CAPABILITIES FOR THE INTERNATIONAL SPACE STATION

G.D. Massa¹, R.M. Wheeler¹, M.W. Romeyn¹, M.E. Hummerick², L.E. Spencer², R.C. Morrow³, C.A. Mitchell⁴, S. Burgner⁴, T.J. Williams⁵, M.H. Young⁶, G.L. Douglas⁶

¹ NASA, Kennedy Space Center, FL, USA, ² Vencore-ESC, Kennedy Space Center, FL, USA, ³ORBITEC, Madison, WI, ⁴Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN ⁵Wyle Life Science, Johnson Space Center, TX, ⁶NASA, Johnson Space Center, TX, USA.

Human Research Program (HRP) Advanced Food Technology (AFT) Project Long Duration Food System Research Plan

 Continuing research to improve prepackaged system

 Supplement diet with pick and eat salad crops

Pick-and-eat salad-crop productivity, nutritional value, and acceptability to supplement the ISS food system

Aim: To examine light quality and fertilizer formulation on crop morphology, edible biomass yield, microbial food safety, organoleptic acceptability, nutritional value, and behavioral health benefits.

Team Components:

KSC: Food Crop Production,

Microbiology

JSC: AFT, BHP, Statistics

Purdue: Food Crop Production

ORBITEC: Food Crop Production,

Lighting, Software

Florikan: Fertilizer Consultants

Veggie plant chamber currently on ISS in the Columbus module.

Planned Project Progression

- Selection of top candidate crops based on preliminary studies
- Ground studies with four light treatments and three fertilizer treatments
- Down-selection to the top fertilizer treatment per crop and the top two light treatments
- Veg-04 flight test of leafy green crop under two light treatments (using Veggie Plant Chamber)
 - Crop growth, nutrient and microbial assays on orbit and on ground
 - BHP analysis of impact of crop growth on crew
 - Organoleptic assessment of crop flavor on ISS
- Veg-05 will be similar for dwarf tomato

Preliminary Growth Studies

Plants were grown in a controlled environment chamber at NASA's Kennedy Space Center, with environmental conditions set to mimic those on ISS (Temperature, RH, higher CO₂, Light Intensity (but not color)).

Leafy Greens - Candidates

- 'Tyee' spinach
- 'Flamingo' spinach
- 'Outredgeous' red romaine lettuce
- 'Waldmann's dark green leaf lettuce
- 'Bull's Blood' beet
- 'Rhubarb' Swiss chard
- 'Tokyo Bekana' Chinese cabbage
- Mizuna

Dwarf Tomato - Candidates

- 'Red Robin' tomato
- 'Sweet 'n' neat' tomato
- 'Mohamed' tomato
- 'Patio Princess' tomato
- 'Tiny Tim' tomato
- 'Tumbler' tomato

Selection Criteria Overview

- Horticultural factors
 - Germination, ease of growth, amount of growth (food), plant size and growth habit
- Dietary factors
 - Percent dry matter
 - Elemental Factors Composition of key elements (K, Fe, Ca, Mg)
 - Nutrient Factors Beneficial phytonutrients (Vitamin K, Lutein, Zeaxanthin, Antioxidants, Lycopene (t))
- Organoleptic factors
 - 9-pt Hedonic Scale: Overall taste, Appearance, Color, Flavor, Texture, Bitterness (g), Aroma (t)
 - 5-point Just About Right Scale: Crispness, Tenderness (g), Sweetness, Tartness, Juiciness (t)

```
(g) = greens and (t)= tomatoes
```

Top Candidates

Leafy greens

• Dwarf tomato

'Tokyo Bekana' Chinese cabbage

'Red Robin' Tomato

Plant Testing

- Red and Blue LED light & Fertilizer testing with top <u>leafy</u> green (two 28-day trials) and <u>tomato</u> (one 90-day trial)
 - Testing at KSC, Purdue
 - Four light regimes assessed:
 - 90% Red (R): 10% Blue (B), 70% R: 30% B, 50% R: 50% B, split treatment of ¾ 90%:10% + ¼ 50%:50%
- Three fertilizer release treatments assessed:
 - 100% 180-day release, 66% 180 d: 34% 100 d, 50% 180 d: 50% 100 d
 - 18-6-8 formulation for leafy crop, 14-4-14 for tomato
- Plants assessed for growth and nutrient content

Preliminary Results – Chinese Cabbage

 Growth differences in response to light and fertilizer with interaction likely

- Faster release fertilizer showed stronger growth under light conditions with increased red. Best yield was with 90% red and 50% of 100-day release fertilizer.
- Observed yellowing stress responses to growth conditions
- Currently studying stress sources and mitigation strategies

Preliminary Results – Tomato

Growth and fruit yield differ in response to light & fertilizer

- Faster release fertilizer produced fewer tomato fruits under high blue conditions and more fruits under a split treatment. The best yield was observed with high red (90%) and 100% of the 180-day release fertilizer.
- Crop also demonstrated some stress responses
- Nutrient analysis underway

Space Food Safety Component

- Hazard Analysis and Critical Control Point (HACCP) Plan
 - Assess risks
 - Evaluate operating parameters
 - Set controls to mitigate risk
- Task involves:
 - Assessment of crop microbiology
 - Working to develop standards for space-grown produce
 - Working with stakeholders to implement regular crew consumption

Baseline Chinese Cabbage Data

Traditional Single Harvest

	Harvest (g)	Harvest (cfu/g)	
Cabbage	Plant FM	APC	Y + M
Plant A	6.3	<dl< th=""><th>441</th></dl<>	441
Plant B	10.1	172	<dl< th=""></dl<>
Plant C	15.1	154	77
Plant D	7.9	27	<dl< th=""></dl<>
Plant E	12.7	<dl< th=""><th>57</th></dl<>	57
Plant F	24.1	<dl< th=""><th>326</th></dl<>	326

Cut-and-come-again 1st harvest

	Harvest 1 (g)	Harvest 1 (cfu/g)	
Cabbage	Plant FM	APC	Y + M
Plant A	15.45	58,500	<50
Plant B	7.10	950	<50
Plant C	3.93	200	<50
Plant D	3.61	<50	<50
Plant E			
Plant F	11.96	150	<50

NASA standard for non-thermostabilized food is:

Aerobic Plate Count less than 20,000 CFU/g for a single sample Yeast and Mold less than 1000 CFU/g for a single sample

- Cut-and-come-again Plant A had APC levels higher than NASA standard
- Seed-borne Aspergillus niger fungus was noted on two leaves as black spots
- Mitigation step is a precautionary sanitizing step

Harvested Chinese cabbage was found to be generally acceptable for consumption

Behavioral Health Component

- A highest priority stressor anticipated for a long duration mission is lack of sensory stimulation due to isolation and confinement
- Plants have potential countermeasure benefits:
 - Dramatic visual relief
 - Growth and development provide cues to time passing
 - Tending plants can be relaxing
 - Fresh vegetables for flavor and texture dietary variety
 - Scents, colors and textures augment environment
- Flight approach:
 - Profiles of mood
 - Veggie-specific Questionnaires with Visual Analog Scales to minimize time required
 - Open-ended optional questions

Next Steps

- Second Veggie chamber to be deployed to ISS summer 2017
- Custom software to be uploaded to both chambers
- Development of new water delivery system
- Growth tests in new analog water delivery
- Establish if supplemental fertilizer can mitigate plant stress
- Institutional review board approval for Veg-04 and Veg-05
- Plan for some percentage of produce consumption in Veg-04 and Veg-05 (if mass measurement available on ISS)

Thank you!

- Matthew Mickens
- Previous team members :
 - Alexandra M. Whitmire
 - Robert Ploutz-Snyder
- Florikan
- Crop Selection (KSC):
 - Gary Stutte
 - Jeff Richards
- Veggie and Veg-04/05 team
- Bridgit Higginbotham, Wayne Saxer, Stephanie Ploeger, De Ante Cooper, Brian Gore, Rob Yee

 HRP and SLPS for co-funding the 2015 ILSRA award – MTL# 1075.

'Tokyo Bekana' Chinese cabbage growing in Veggie

Questions?

